The multi-flavor Schwinger model with chemical potential

Overcoming the sign problem with MPS

Stefan Kühn Max Planck Institute of Quantum Optics

in collaboration with

Mari Carmen Bañuls Krzysztof Cichy J. Ignacio Cirac Karl Jansen Hana Saito MPQ Goethe-University, Frankfurt am Main MPQ NIC, DESY Zeuthen CCS, University of Tsukuba

Outline

2) Motivation

Multi-flavor Schwinger model on the lattice

Preliminary results

- Coming form quantum information theory
- MPS ansatz with open boundary conditions (OBC) for system with *N* sites

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_N} A^{i_1} A^{i_2} \dots A^{i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$

- Coming form quantum information theory
- MPS ansatz with open boundary conditions (OBC) for system with *N* sites

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_N} A^{i_1} A^{i_2} \dots A^{i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$

• Tensors
$$A^{i_k} \in \mathbb{C}^{D imes D}$$

- Coming form quantum information theory
- MPS ansatz with open boundary conditions (OBC) for system with *N* sites

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_N} A^{i_1} A^{i_2} \dots A^{i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$

• Tensor
$$A^{i_1} \in \mathbb{C}^{1 imes D}$$

- Coming form quantum information theory
- MPS ansatz with open boundary conditions (OBC) for system with *N* sites

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_N} A^{i_1} A^{i_2} \dots A^{i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$

• Tensor
$$A^{i_N} \in \mathbb{C}^{D imes 1}$$

physical index:
$$1, \ldots, d$$

MPS ansatz

- Coming form quantum information theory
- MPS ansatz with open boundary conditions (OBC) for system with *N* sites

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_N} A^{i_1} A^{i_2} \dots A^{i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$

• Tensor
$$A^{i_N} \in \mathbb{C}^{D imes 1}$$

physical index:
$$1, \ldots, d$$

• D: Bond dimension of the MPS

Scaling

• Number of parameters in the MPS with OBC

Scaling

Number of parameters in the MPS with OBC

Dimension of the full Hilbert space

 d^N

Scaling

Number of parameters in the MPS with OBC

$$|\psi\rangle = \square \square \square \dots \square \square$$

 $(N-2)D^2d + 2Dd = O(ND^2d)$

Dimension of the full Hilbert space

d^N

• Quantum information: Physically relevant states $D \ll d^{\lfloor rac{N}{2}
floor}$

M. B. Hastings, Journal of Statistical Mechanics 2007 (2007)

Monte Carlo

Expectation values Correlation functions Time evolution Sign problem free 3 + 1 dimensions < × × <

Matrix Product States

Ground states Low lying excitations Time evolution Sign problem free 3 + 1 dimensions ✓✓✓✓✓

Matrix Product States

2) Motivation

Multi-flavor Schwinger model on the lattice

Preliminary results

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = -\frac{i}{2a} \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right) \\ + \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} L_{n}^{2}$$

Kinetic pa

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i}{2a} \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)$$

+
$$\sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2}$$

+
$$\sum_{n=1}^{F} \sum_{f=1}^{K} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2}$$

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f}^{\dagger} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f}^{\dagger} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f}^{\dagger} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right)}$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^F \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2}$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^F \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

$$\textcircled{}$$

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right) \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right)$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^{F} \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

Lattice Hamiltonian formulation

Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right) \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right)$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^F \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

Lattice Hamiltonian formulation

Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right) \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right)$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^F \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

Lattice Hamiltonian formulation

• Lattice formulation with Kogut-Susskind staggered fermions

$$H = \frac{i \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} e^{i\theta(n)} \phi_{n+1,f} - h.c \right)}{+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} m_{f} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + \kappa_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} \frac{L_{n}^{2}}{2} \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right) \left(L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} + L_{n}^{2} \right)$$

Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law

$$L_n - L_{n-1} = Q_n = \sum_{f=1}^F \left[\phi_{n,f}^{\dagger} \phi_{n,f} - \frac{1}{2} \left(1 - (-1)^n \right) \right]$$

Lattice Hamiltonian formulation

Dimensionless formulation on gauge invariant subspace

$$W = - \frac{1}{N} \sum_{n=1}^{N-1} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} \phi_{n+1,f} - h.c \right) + \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} \mu_{f} + \nu_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \sum_{n=1}^{N-1} \left(l_{0} + \sum_{k=1}^{n} Q_{n} \right)^{2}$$

Lattice Hamiltonian formulation

Dimensionless formulation on gauge invariant subspace

$$W = -\sum_{n=1}^{N} \sum_{f=1}^{F} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} \phi_{n+1,f} - h.c \right) + \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} \mu_{f} + \nu_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \sum_{n=1}^{N-1} \left(l_{0} + \sum_{k=1}^{n} Q_{n} \right)^{2} + \sum_{1/(ag)^{2}} \sum_{2m_{f}/ag^{2}} \sum_{2m_{f}/ag^{2}} \left(\frac{1}{2\kappa_{f}/ag^{2}} \right)^{2} + \sum_{n=1}^{N-1} \left(l_{0} + \sum_{k=1}^{n} Q_{n} \right)^{2} + \sum_{1/(ag)^{2}} \sum_{2m_{f}/ag^{2}} \left(\frac{1}{2\kappa_{f}/ag^{2}} \right)^{2} + \sum_{n=1}^{N-1} \left(\frac{1}{2\kappa_{f}/a$$

Lattice Hamiltonian formulation

Dimensionless formulation on gauge invariant subspace

$$W = - \sum_{n=1}^{N} \sum_{f=1}^{F} \left(\phi_{n,f}^{\dagger} \phi_{n+1,f} - h.c \right)$$

$$+ \sum_{n=1}^{N} \sum_{f=1}^{F} \left((-1)^{n} \mu_{f} + \nu_{f} \right) \phi_{n,f}^{\dagger} \phi_{n,f} + \sum_{n=1}^{N-1} \left(l_{0} + \sum_{k=1}^{n} Q_{n} \right)^{2}$$

$$+ \sum_{n=1}^{I/(ag)^{2}} \sum_{2m_{f}/ag^{2}} \left(\sum_{2\kappa_{f}/ag^{2}} \phi_{n,f} + \sum_{n=1}^{N-1} \left(l_{0} + \sum_{k=1}^{n} Q_{n} \right)^{2} \right)^{2}$$

$$+ \text{Hamiltonian commutes with } N_{i} = \sum_{n=1}^{N} \phi_{n,i}^{\dagger} \phi_{n,i}$$

Previous analytic work

• Analysis of the phase structure for the massless case m/g = 0on a torus

R. Narayanan, Phys. Rev. D 86, 125008 (2012) R. Lohmayer, R. Narayanan, Phys. Rev. D 88, 105030 (2013)

Previous analytic work

- Analysis of the phase structure for the massless case m/g = 0on a torus
- Result for the two flavor case

• Jumps in the particle number difference correspond to first oder phase transitions

R. Narayanan, Phys. Rev. D 86, 125008 (2012) R. Lohmayer, R. Narayanan, Phys. Rev. D 88, 105030 (2013)

Matrix Product States

2) Motivation

3 Multi-flavor Schwinger model on the lattice

Preliminary results

MPS approach to the multi-flavor Schwinger model

- Focus on the two flavor case at zero temperature
- Fix $\nu_1 = 0$ and vary ν_2
- Use MPS with with OBC

MPS approach to the multi-flavor Schwinger model

- Focus on the two flavor case at zero temperature
- Fix $\nu_1 = 0$ and vary ν_2
- Use MPS with with OBC
- Fixed physical volume

Bond dimension:

 $D \in [40, 220]$

→ Lattice spacing: $x \in [9, 121]$ Volume: $\frac{N}{\sqrt{x}} \in \{2, 6, 8\}$

Massless case m/g = 0

Data for fit

Massive case

Scaling with volume of the 1. jump

I) Matrix Product States

2) Motivation

3 Multi-flavor Schwinger model on the lattice

Preliminary results

Conclusion & Outlook

Conclusion

- Good agreement with analytic prediction
- Sign problem can be overcome
- Readily extends to massive case

Outlook

- MPS are very versatile
 - Finite temperature
 - Dynamical problems
 - Non-abelian gauge models
 - Generalizations to higher dimensions exist

Thank you for your attention!

More on Tensor Networks in Lattice Gauge Theory:

Plenary Talk by Dr. Shinji TAKEDA

A. Ground state calculation with MPS

Algorithm

State as MPS with OBC

$$|\psi\rangle = \Box \Box \Box = \cdots = \Box \Box$$

Hamiltonian as Matrix Product Operator (MPO)

A. Ground state calculation with MPS

Algorithm

State as MPS with OBC

$$|\psi\rangle = \Box + \Box + \cdots + \Box + \Box$$

Hamiltonian as Matrix Product Operator (MPO)

Eigenvalues inside a block

• Hamiltonian conserves particle numbers N_1 and N_2

$$H = \nu_1 N_1 + \nu_2 N_2 + H_{\text{aux}}$$

Energy eigenvalues

$$E_{(N_1,N_2)}(\nu_1,\nu_2) = \nu_1 N_1 + \nu_2 N_2 + E_{\min}(H_{\max}|_{(N_1,N_2)})$$

Eigenvalues inside a block

• Hamiltonian conserves particle numbers N_1 and N_2

$$H = \nu_1 N_1 + \nu_2 N_2 + H_{\mathsf{aux}}$$

Energy eigenvalues

Eigenvalues inside a block

• Hamiltonian conserves particle numbers N_1 and N_2

$$H =
u_1 N_1 +
u_2 N_2 + H_{\mathsf{aux}}$$

Energy eigenvalues

Locating the jumps

• Transition from (N_1, N_2) to $(\overline{N}_1, \overline{N}_2) \Leftrightarrow E_{(N_1, N_2)} = E_{(\overline{N}_1, \overline{N}_2)}$

