Slow topology change and its effects

C. Bernard ${ }^{1}$ and D. Toussaint ${ }^{2}$

${ }^{1}$ Dept. of Physics
Washington University, St. Louis

${ }^{2}$ Physics Department
University of Arizona
July 25, 2016

Introduction

- Evolution of topology gets very slow as $a \rightarrow 0$
- How slow?
- Does it affect $M_{p s}$ and $F_{p s}$?
- How should we account for it?
- Work in progress - we haven't really adjusted data yet

Topology time histories

- Q histories
- $m_{l}=$
physical
- $m_{l}=m_{s} / 5$
- Notice
narrower
distributions and shorter autocorrelation time for physical quark mass.

- Crosses: $<Q^{2} / V>$
- Octagons: Tunneling rate $\left\langle(\Delta Q)^{2}\right\rangle$ decreases as $a \rightarrow 0$, more or less independent of mass.
- But width of Q distribution smaller for smaller mass, so takes less time to cover the distribution.

Theory basics

- Definition of θ and topological susceptibility χ_{t}

$$
\begin{aligned}
Z(\theta) & =\int \mathcal{D} A \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \exp (-S[A, \bar{\Psi}, \Psi]) \exp (-i \theta Q[A]) \\
\chi_{t} & \equiv-\left.\frac{1}{V}\left(\frac{1}{Z} \frac{\partial^{2} Z}{\partial \theta^{2}}\right)\right|_{\theta=0}=\frac{1}{V}\left\langle Q^{2}\right\rangle
\end{aligned}
$$

- Fourier transform on θ gets quantities at fixed Q :

$$
\begin{aligned}
Z_{Q} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta \exp (i \theta Q) Z(\theta) \\
G_{Q} & \left.=\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{n}\right\rangle_{Q}=\frac{1}{Z_{Q}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta \exp (i \theta Q) Z(\theta) G(\theta)\right\rangle_{\theta}
\end{aligned}
$$

$$
\text { with } G(\theta)=\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{n}\right\rangle_{\theta}
$$

[Leutwyler and Smilga 1992, Brower et al. 2003, Aoki et al. 2007, Dromard et al. 2015]:

Properties at fixed Q

- For large 4-dim volumes V, we can do θ integrals by saddle point method

$$
G_{Q}=G\left(\theta_{s}\right)+\left.\frac{1}{2 \chi_{t} V} \frac{\partial^{2} G}{\partial \theta^{2}}\right|_{\theta=\theta_{s}}+\ldots, \quad \text { with } \theta_{s}=i \frac{Q}{\chi_{t} V}
$$

- This gives, for particle mass M and decay constant f :

$$
\begin{aligned}
\left.M\right|_{Q, V} & =M+\frac{1}{2 \chi_{t} V} M^{\prime \prime}\left(1-\frac{Q^{2}}{\chi_{t} V}\right)+\mathcal{O}\left(\frac{1}{\left(\chi_{t} V\right)^{2}}\right) \\
\left.f\right|_{Q, V} & =f+\frac{1}{2 \chi_{t} V} f^{\prime \prime}\left(1-\frac{Q^{2}}{\chi_{t} V}\right)+\mathcal{O}\left(\frac{1}{\left(\chi_{t} V\right)^{2}}\right)
\end{aligned}
$$

where $\left.B^{\prime \prime} \equiv \frac{\partial^{2} B}{\partial \theta^{2}}\right|_{\theta=0}$ for any quantity B.

- $\left\langle Q^{2}\right\rangle=\chi_{t} V, \rightarrow$ correction vanishes when averaged over Q^{2}.

Properties at fixed Q, continued

- $M^{\prime \prime}$ and $f^{\prime \prime}$ are physical:
- Can evaluate them on one ensemble to estimate effects on another.
- Can also calculate them in continuum, infinite volume, ChPT.
- These methods allow us to estimate errors in M and F due to problems in our sampling of the topological-charge distribution, or even make corrections for poor sampling.

ChPT in unitary case

- With an anomalous chiral rotation, can get rid of $i \theta Q$ term in action and put into quark mass matrix.
- Chiral Lagrangian for n_{F} flavors becomes:

$$
\mathcal{L}=\frac{f^{2}}{8} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}\right)-\frac{B f^{2}}{4} \operatorname{tr}\left(e^{-i \theta / n_{F}} \mathcal{M} \Sigma+e^{i \theta / n_{F}} \mathcal{M} \Sigma^{\dagger}\right)
$$

- At tree level, we need to minimize the potential energy term to find $\langle\Sigma\rangle$ (i.e., the vacuum state).
- Then expand potential to second order in fields to find meson masses as a function of θ.
- Axial current and hence decay constants come only from kinetic energy term; will be independent of θ unless $\langle\Sigma\rangle$ has non-trivial θ dependence.

[^0]
ChPT calculation in unitary case

- With $n_{F}=3$, and $m_{u}=m_{d} \equiv m \neq m_{s}$,

$$
\langle\Sigma\rangle=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{-2 i \alpha}
\end{array}\right)
$$

- Minimize potential energy to find α. (It's enough to do this implicitly, since we only need derivatives at $\theta=0$.)
- Expand around vacuum state $\langle\Sigma\rangle$ by

$$
\Sigma=\sqrt{\langle\Sigma\rangle} e^{2 i \Phi / f} \sqrt{\langle\Sigma\rangle}
$$

with Φ the meson field.

- This way of expanding keeps "extended parity" (parity+ $\theta \rightarrow-\theta$) simple: $\Phi \rightarrow-\Phi, \Sigma \rightarrow \Sigma^{\dagger}$.

Results in unitary case

- Subsumed in partially quenched case, so skip for now
- With $n_{F}=3$, and $m_{u}=m_{d} \equiv m \neq m_{s}$,

$$
\begin{aligned}
M_{\pi}^{\prime \prime} & =-M_{\pi} \frac{m_{s}^{2}}{2\left(m+2 m_{s}\right)^{2}} \\
M_{K}^{\prime \prime} & =-M_{K} \frac{m m_{s}}{2\left(m+2 m_{s}\right)^{2}} \\
f_{\pi}^{\prime \prime} & =0 \\
f_{K}^{\prime \prime} & =-f_{K} \frac{\left(m_{s}-m\right)^{2}}{4\left(m+2 m_{s}\right)^{2}}
\end{aligned}
$$

- For $n_{F}=4$, decoupling works (if m_{c} is sufficiently heavy), so can use the above results.

ChPT in partially quenched case

- Aoki \& Fukaya (2009) worked this out using replica method to remove the determinant of the valence quarks.
- However, the calculation is non-perturbative (need to find a non-trivial vacuum), and the replica method is really only justified perturbatively.
- Lagrangian approach of Bernard \& Golterman (1993), which introduces ghost (bosonic) quarks to cancel the valence quark determinant, is also only valid perturbatively:
- Ignores the requirement that bosonic path integral be convergent.
- \Rightarrow propagators of ghost-ghost mesons have wrong sign at chiral level.
- Sharpe \& Shoresh [SS] (2001) and Golterman, Sharpe, \& Singleton [GSS] (2005) fixed the non-perturbative problems of Lagrangian approach by taking into account the requirement of convergence for path integral.

ChPT in partially quenched case

- Chiral field of SS and GSS takes the form (up to subtleties on the diagonal):

$$
\Sigma=e^{2 i \Phi / f}, \quad \Phi=\left(\begin{array}{cc}
\phi & \bar{\chi} \\
\chi & -i \hat{\phi}
\end{array}\right)
$$

- Quark-quark meson field ϕ is as usual: path integral over compact space.
- Quark-ghost fields χ and $\bar{\chi}$ are fermionic: path-integral convergence not an issue.
- Ghost-ghost field $\hat{\phi}$ is bosonic \& hermitian, and integrated from $-\infty$ to $+\infty$. (Technically, we mean the "body" of $\hat{\phi}$ here.)
- Chiral Lagrangian for n_{F} sea quarks (and arbitrary number of valence quarks) is then
$\mathcal{L}=\frac{f^{2}}{8} \operatorname{str}\left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{-1}\right)-\frac{B f^{2}}{4} \operatorname{str}\left(e^{-i \theta / n_{F}} \mathcal{M} \Sigma+e^{i \theta / n_{F}} \mathcal{M} \Sigma^{-1}\right)$
- propagator of $\hat{\phi}$ has correct sign, despite supertrace (str), because of extra -i factors.

ChPT calculation in partially quenched case

- Analysis then proceeds much as in unitary case.
- Key differences:
- Potential energy is complex! Need to find a saddle point (deforming $\hat{\phi}$ contour as needed), not a minimum.
- Must demand/check that symmetry between valence and ghost quarks is not spontaneously broken.
- Results, for meson made from valence quarks x and y :

$$
\begin{aligned}
M_{x y}^{\prime \prime} & =-M_{x y} \frac{m^{2} m_{s}^{2}}{2\left(m+2 m_{s}\right)^{2}} \frac{1}{m_{x} m_{y}} \\
f_{x y}^{\prime \prime} & ==-f_{x y} \frac{m^{2} m_{s}^{2}}{4\left(m+2 m_{s}\right)^{2}} \frac{\left(m_{x}-m_{y}\right)^{2}}{m_{x}^{2} m_{y}^{2}}
\end{aligned}
$$

- Agrees with Aoki \& Fukaya, (2009).
- Singular limit as $m_{x} \rightarrow 0$ or $m_{y} \rightarrow 0$ presumably comes from topological zero modes: not suppressed by low valence-quark mass since valence determinant absent.

Are we in trouble at small m_{l} ?

$$
\left.M\right|_{Q, V}=M+\frac{1}{2 \chi_{t} V} M^{\prime \prime}\left(1-\frac{Q^{2}}{\chi_{t} V}\right)+\mathcal{O}\left(\frac{1}{\left(\chi_{t} V\right)^{2}}\right)
$$

- Dependence on quark mass? $\chi_{t} \propto m_{l}$, but we increase L as $m_{l} \rightarrow 0: V \propto M_{\pi}^{-4} \propto m_{l}^{-2}$
- Roughly, prefactor $\frac{1}{2 \chi_{t} V} \propto m_{l}$
- For $M^{\prime \prime}$ and $F^{\prime \prime}$, fractional effects ind. of m_{l} (unitary case)
- Better on the physical quark mass ensembles!
- And also, Q equilibrates faster on physical quark mass ensembles

Test $\chi \mathbf{P T}$ with our data

- Reconstruct effective M_{π} and F_{π} for each lattice from single elimination jackknife. ($-N$ times deviation of jackknife sample average)
- Error on each point $=$ std. dev. of distribution, so $\chi^{2} / D=1$ for fit to constant (i.e. average)
- Linear fit: $M_{\pi}=M_{0}+\frac{C}{2} Q^{2}$.
- Find $\frac{\partial^{2} M}{\partial \theta^{2}}$ from $C=\frac{\partial M_{\pi}}{\partial Q^{2}}$.
- Decrease in χ^{2} / D is fraction of variance attributable to changes in Q^{2}.
- (This reverse engineering was checked on $0.06 \mathrm{fm} m_{s} / 5$ ensemble by separately analyzing two parts: $Q^{2}>$ above/below median.)

$-\frac{\partial^{2} M}{\partial \theta^{2}}$
- Ensembles with $m_{l}=m_{s} / 5$
- Along the line $m_{A}=m_{B}$
- Line is PQ χ PT prediction (no free parameters)
- Square is unitary point
- ~ 2 std. dev. at best, but does do the expected thing

$-\frac{\partial^{2} F}{\partial \theta^{2}}$
- Ensembles with $m_{l}=m_{s} / 5$
- Along the line $m_{B}=m_{s}$
- Line is $\mathrm{PQ} \chi \mathrm{PT}$
- (remember it vanishes for degenerate quarks.(

$-\frac{\partial^{2} F}{\partial \theta^{2}}$
- Ensembles with $m_{l}=m_{s} / 5$
- Along the line $m_{B}=$ smallest
- Lines are PQ χ PT
- 3 lines, because ensembles had different smallest m_{A}

How big are the corrections?

- OK, at \sim two standard deviation level, χ PT works - so what?
- If we know the correct $<Q^{2}>$, we can adjust our data
- LO staggered $\chi \mathrm{PT}: \chi_{T}=\frac{f_{\pi}^{2}}{4} \overline{M_{l}^{2}}$
- where $1 / \overline{M_{I}^{2}}=2 / M_{\pi, I}^{2}+1 / M_{s s, l}^{2}$ (taste singlet masses)

- Crosses are $\frac{Q^{2}}{V}$ in our simulations
- Squares are lowest order staggered χ PT
- For large a $(\approx>0.9$ fm) LO χ PT doesn't work well.

Example 1: f_{K} / f_{π} at $a=0.042 \mathrm{fm}, m_{p h y s}$

- Physical quark mass ensemble
- $f_{\text {corrected }}=f_{\text {sample }}-\frac{1}{2 \chi_{T} V} F^{\prime \prime}\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)$
- $\mathrm{L}=6.05 \mathrm{fm}: \frac{1}{2 \chi_{T} V}=0.013$
- $\chi \mathrm{PT}: F^{\prime \prime}=-0.055 F$
- $\chi \mathrm{PT}: \chi_{T}=0.028 \mathrm{fm}^{-4},<Q^{2}>_{\text {sample }} / V=0.020$, $\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)=0.29$
- $\frac{\Delta f}{f}=0.0002$
- cf fractional statistical error on $f_{K} / f_{\pi}=0.0010$
- cf "conventional" finite size effect (NNLO S χ PT), (fractional) 0.0009

Example 2: f_{K} / f_{π} at $a=0.042 \mathrm{fm}, m_{l}=m_{s} / 5$

- OK, try an unphysical quark mass ensemble
- Look at lightest valence quark, $m \approx m_{\text {phys }}$
- Worst case - a PQ divergence here
- $f_{\text {corrected }}=f_{\text {sample }}-\frac{1}{2 \chi_{T} V} F^{\prime \prime}\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)$
- $\mathrm{L}=2.88 \mathrm{fm}: \frac{1}{2 \chi_{T} V}=0.07$
- χ PT: $F^{\prime \prime}=-0.10 F$
- $\chi \mathrm{PT}: \chi_{T}=0.129 \mathrm{fm}^{-4},<Q^{2}>_{\text {sample }} / V=1.30$, $\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)=-0.30$
- $\frac{\Delta f}{f}=-0.002$
- cf fractional statistical error on $f_{K} / f_{\pi}=0.003$

Comment on strategy

- This is really the same general strategy that we use for "conventional" finite size effects:
- Use $\chi \mathrm{PT}$ to estimate the effects.
- Check χ PT against a simulation someplace where it is possible
- Adjust results using χ PT.
- Systematic error budget includes estimate of residual effects: higher order $\chi \mathrm{PT}$ and/or uncertainties in $\chi \mathrm{PT}$ parameters.
- To be fair, we have not yet included these corrections in talks at this conference - still a work in progress.
- And χ PT hasn't been done for other things, e.g. heavy-light

EXTRA SLIDES

Example 3: f_{K} / f_{π} at $a=0.032 \mathrm{fm}, m_{l}=m_{s} / 5$

- Another unphysical quark mass, Q almost stuck in this one.
- Did not run light PQ correlators on this one, so " f_{π} " is at $m_{s} / 5$
- $f_{\text {corrected }}=f_{\text {sample }}-\frac{1}{2 \chi_{T} V} F^{\prime \prime}\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)$
- $\mathrm{L}=3.09 \mathrm{fm}: \frac{1}{2 \chi_{T} V}=0.046$
- $\chi \mathrm{PT}: F^{\prime \prime}=-0.033 F$
- $\chi \mathrm{PT}: \chi_{T}=0.121 \mathrm{fm}^{-4},<Q^{2}>_{\text {sample }} / V=0.097$, $\left(1-\frac{\left\langle Q^{2}\right\rangle_{\text {sample }}}{\chi_{T} V}\right)=0.20$
- $\frac{\Delta f}{f}=0.0003$
- cf fractional statistical error on $f_{K} / f_{\pi}=0.0016$

Topological susceptibility

- arXiv:1003.5695, 1004.0342
- Really does improve the gauge configurations!!
- (Other tests involve valence quarks)

Diagonal fields in partially quenched ChPT

- Fields on the diagonal of Φ correspond to non-anomalous generators, i.e., generators whose supertrace vanishes:

$$
\begin{aligned}
& T_{1}=\operatorname{diag}(1,-1,0,0,0,0,0) \\
& T_{2}=\operatorname{diag}(1,1,-2,0,0,0,0) \\
& T_{3}=\operatorname{diag}(0,0,0,1,-1,0,0) \\
& T_{4}=\operatorname{diag}(1,1,1,-3 / 2,-3 / 2,0,0) \\
& T_{5}=\operatorname{diag}(0,0,0,0,0,1,-1) \\
& T_{6}=\operatorname{diag}(1,1,1,1,1,5 / 2,5 / 2)
\end{aligned}
$$

- Notation: first 3 entries correspond to sea quarks, the next 2 to valence quarks, and the last 2 to ghosts.
- $T_{1}, T_{2}, T_{3}, T_{4}$ are quark-like ("normal") since have $\operatorname{str} T_{i}^{2}>0 \Rightarrow$ corresponding fields are real.
- T_{5}, T_{6} are ghost-like since have $\operatorname{str} T_{i}^{2}<0 \Rightarrow$ corresponding fields are $-i \times$ real.

Autqcorrelation of Q

- Two hyp smearings, then integrate FF.
- τ increases as a decreases (compare \times, \times, \times
- τ decreases as m decreases (compare \times, \circ or $\times, 0$.
- Errors in this section VERY approximate

Autqcorrelation of Q^{2}

- Don't usually care about $Q \leftrightarrow-Q$ (CP), so don't care about sign of Q, so look at autocorrelation of Q^{2}.
- Shorter autocorrelation times, with same general pattern

[^0]: Brower et al. 2003; Aoki \& Fukaya, 2009

