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Introduction

I Evolution of topology gets very slow as a→ 0

I How slow?

I Does it affect Mps and Fps?

I How should we account for it?

I Work in progress — we haven’t really adjusted data yet
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Topology time histories

I Q histories

I ml =
physical

I ml = ms/5

I Notice
narrower
distributions
and shorter
autocorrela-
tion time for
physical
quark mass.
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χT

I Crosses: < Q2/V >

I Octagons:
Tunneling rate
〈(∆Q)2〉 decreases as

a→ 0, more or less

independent of mass.

I But width of Q distribution

smaller for smaller mass, so

takes less time to cover the

distribution.
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Theory basics
I Definition of θ and topological susceptibility χt

Z (θ) =

∫
DADΨ̄DΨ exp(−S [A, Ψ̄,Ψ]) exp(−iθQ[A])

χt ≡ − 1

V

(
1

Z

∂2Z

∂θ2

) ∣∣∣∣∣
θ=0

=
1

V
〈Q2〉

I Fourier transform on θ gets quantities at fixed Q:

ZQ =
1

2π

∫ π

−π
dθ exp(iθQ)Z (θ)

GQ = 〈O1O2...On〉Q =
1

ZQ

1

2π

∫ π

−π
dθ exp(iθQ)Z (θ)G (θ)〉θ

with G (θ) = 〈O1O2...On〉θ
[Leutwyler and Smilga 1992, Brower et al. 2003, Aoki et al. 2007, Dromard et al. 2015]:
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Properties at fixed Q
I For large 4-dim volumes V , we can do θ integrals by saddle

point method

GQ = G (θs) +
1

2χtV

∂2G

∂θ2

∣∣
θ=θs

+ ..., with θs = i
Q

χtV

I This gives, for particle mass M and decay constant f :

M
∣∣
Q,V

= M +
1

2χtV
M ′′
(

1− Q2

χtV

)
+O

(
1

(χtV )2

)
f
∣∣
Q,V

= f +
1

2χtV
f ′′
(

1− Q2

χtV

)
+O

(
1

(χtV )2

)
where B ′′ ≡ ∂2B

∂θ2

∣∣
θ=0

for any quantity B .

I 〈Q2〉 = χtV , → correction vanishes when averaged over
Q2.

[Leutwyler and Smilga 1992, Brower et al. 2003, Aoki et al. 2007, Dromard et al. 2015]:
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Properties at fixed Q, continued

I M ′′ and f ′′ are physical:
I Can evaluate them on one ensemble to estimate effects on

another.
I Can also calculate them in continuum, infinite volume,

ChPT.

I These methods allow us to estimate errors in M and F due
to problems in our sampling of the topological-charge
distribution, or even make corrections for poor sampling.
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ChPT in unitary case

I With an anomalous chiral rotation, can get rid of iθQ term
in action and put into quark mass matrix.

I Chiral Lagrangian for nF flavors becomes:

L =
f 2

8
tr(∂µΣ∂µΣ†)− Bf 2

4
tr(e−iθ/nFMΣ + e iθ/nFMΣ†)

I At tree level, we need to minimize the potential energy
term to find 〈Σ〉 (i.e., the vacuum state).

I Then expand potential to second order in fields to find
meson masses as a function of θ.

I Axial current and hence decay constants come only from
kinetic energy term; will be independent of θ unless 〈Σ〉 has
non-trivial θ dependence.

Brower et al. 2003; Aoki & Fukaya, 2009
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ChPT calculation in unitary case

I With nF = 3, and mu = md ≡ m 6= ms ,

〈Σ〉 =

e iα 0 0
0 e iα 0
0 0 e−2iα


I Minimize potential energy to find α. (It’s enough to do this

implicitly, since we only need derivatives at θ = 0.)

I Expand around vacuum state 〈Σ〉 by

Σ =
√
〈Σ〉 e2iΦ/f

√
〈Σ〉,

with Φ the meson field.

I This way of expanding keeps “extended parity” (parity+
θ → −θ) simple: Φ→ −Φ, Σ→ Σ†.
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Results in unitary case

I Subsumed in partially quenched case, so skip for now

I With nF = 3, and mu = md ≡ m 6= ms ,

M ′′π = −Mπ
m2

s

2(m + 2ms)2
,

M ′′K = −MK
mms

2(m + 2ms)2
,

f ′′π = 0,

f ′′K = −fK
(ms −m)2

4(m + 2ms)2
.

I For nF = 4, decoupling works (if mc is sufficiently heavy),
so can use the above results.
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ChPT in partially quenched case
I Aoki & Fukaya (2009) worked this out using replica method

to remove the determinant of the valence quarks.
I However, the calculation is non-perturbative (need to find a

non-trivial vacuum), and the replica method is really only
justified perturbatively.

I Lagrangian approach of Bernard & Golterman (1993),
which introduces ghost (bosonic) quarks to cancel the
valence quark determinant, is also only valid perturbatively:

I Ignores the requirement that bosonic path integral be
convergent.

I ⇒ propagators of ghost-ghost mesons have wrong sign at
chiral level.

I Sharpe & Shoresh [SS] (2001) and Golterman, Sharpe, &
Singleton [GSS] (2005) fixed the non-perturbative problems
of Lagrangian approach by taking into account the
requirement of convergence for path integral.
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ChPT in partially quenched case
I Chiral field of SS and GSS takes the form (up to subtleties on the

diagonal):

Σ = e2iΦ/f , Φ =

(
φ χ̄

χ −i φ̂

)
I Quark-quark meson field φ is as usual: path integral over

compact space.
I Quark-ghost fields χ and χ̄ are fermionic: path-integral

convergence not an issue.
I Ghost-ghost field φ̂ is bosonic & hermitian, and integrated

from −∞ to +∞. (Technically, we mean the “body” of φ̂ here.)

I Chiral Lagrangian for nF sea quarks (and arbitrary number
of valence quarks) is then

L =
f 2

8
str(∂µΣ∂µΣ−1)−Bf 2

4
str(e−iθ/nFMΣ+e iθ/nFMΣ−1)

I propagator of φ̂ has correct sign, despite supertrace (str),
because of extra -i factors.
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ChPT calculation in partially quenched case
I Analysis then proceeds much as in unitary case.
I Key differences:

I Potential energy is complex! Need to find a saddle point
(deforming φ̂ contour as needed), not a minimum.

I Must demand/check that symmetry between valence and
ghost quarks is not spontaneously broken.

I Results, for meson made from valence quarks x and y :

M ′′xy = −Mxy
m2m2

s

2(m + 2ms)2

1

mxmy
,

f ′′xy = = −fxy
m2m2

s

4(m + 2ms)2

(mx −my )2

m2
xm

2
y

.

I Agrees with Aoki & Fukaya, (2009).
I Singular limit as mx → 0 or my → 0 presumably comes

from topological zero modes: not suppressed by low
valence-quark mass since valence determinant absent.
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Are we in trouble at small ml?

I

M
∣∣
Q,V

= M +
1

2χtV
M ′′
(

1− Q2

χtV

)
+O

(
1

(χtV )2

)
I Dependence on quark mass? χt ∝ ml , but we increase L as

ml → 0: V ∝ M−4
π ∝ m−2

l

I Roughly, prefactor 1
2χtV

∝ ml

I For M ′′ and F ′′, fractional effects ind. of ml (unitary case)

I Better on the physical quark mass ensembles!

I And also, Q equilibrates faster on physical quark mass
ensembles
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Test χPT with our data

I Reconstruct effective Mπ and Fπ for each lattice from single
elimination jackknife. ( −N times deviation of jackknife
sample average)

I Error on each point = std. dev. of distribution, so
χ2/D = 1 for fit to constant (i.e. average)

I Linear fit: Mπ = M0 + C
2
Q2.

I Find ∂2M
∂θ2 from C = ∂Mπ

∂Q2 .

I Decrease in χ2/D is fraction of variance attributable to
changes in Q2.

I (This reverse engineering was checked on 0.06 fm ms/5
ensemble by separately analyzing two parts: Q2 >
above/below median.)

D. Toussaint (Univ. of Arizona) Topology, Lattice 2016 July 25, 2016 15 / 29



∂2M
∂θ2

I ∂2M
∂θ2

I Ensembles with
ml = ms/5

I Along the line
mA = mB

I Line is PQχPT
prediction (no free
parameters)

I Square is unitary
point

I ∼ 2 std. dev. at best, but

does do the expected thing
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∂2F
∂θ2

I ∂2F
∂θ2

I Ensembles with
ml = ms/5

I Along the line
mB = ms

I Line is PQχPT

I (remember it vanishes for

degenerate quarks.(
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∂2F
∂θ2

I ∂2F
∂θ2

I Ensembles with
ml = ms/5

I Along the line
mB = smallest

I Lines are PQχPT

I 3 lines, because
ensembles had
different smallest
mA
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How big are the corrections?

I OK, at ∼ two standard deviation level, χPT works — so
what?

I If we know the correct < Q2 >, we can adjust our data

I LO staggered χPT: χT = f 2
π

4
M2

I

I where 1/M2
I = 2/M2

π,I + 1/M2
ss,I (taste singlet masses)
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χT

I Crosses are Q2

V
in

our simulations

I Squares are lowest
order staggered
χPT

I For large a (≈> 0.9
fm) LO χPT
doesn’t work well.
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Example 1: fK/fπ at a = 0.042 fm, mphys

I Physical quark mass ensemble

I fcorrected = fsample − 1
2χT V

F ′′
(

1− <Q2>sample

χT V

)
I L=6.05 fm: 1

2χT V
= 0.013

I χPT: F ′′ = −0.055 F

I χPT: χT = 0.028 fm−4, < Q2 >sample /V = 0.020,(
1− <Q2>sample

χT V

)
= 0.29

I ∆f
f

= 0.0002

I cf fractional statistical error on fK/fπ = 0.0010

I cf “conventional” finite size effect (NNLO SχPT),
(fractional) 0.0009
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Example 2: fK/fπ at a = 0.042 fm, ml = ms/5

I OK, try an unphysical quark mass ensemble

I Look at lightest valence quark, m ≈ mphys

I Worst case – a PQ divergence here

I fcorrected = fsample − 1
2χT V

F ′′
(

1− <Q2>sample

χT V

)
I L=2.88 fm: 1

2χT V
= 0.07

I χPT: F ′′ = −0.10 F

I χPT: χT = 0.129 fm−4, < Q2 >sample /V = 1.30,(
1− <Q2>sample

χT V

)
= −0.30

I ∆f
f

= −0.002

I cf fractional statistical error on fK/fπ = 0.003
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Comment on strategy

I This is really the same general strategy that we use for
“conventional” finite size effects:

I Use χPT to estimate the effects.

I Check χPT against a simulation someplace where it is
possible

I Adjust results using χPT.

I Systematic error budget includes estimate of residual
effects: higher order χPT and/or uncertainties in χPT
parameters.

I To be fair, we have not yet included these corrections in
talks at this conference — still a work in progress.

I And χPT hasn’t been done for other things, e.g. heavy-light
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EXTRA SLIDES
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Example 3: fK/fπ at a = 0.032 fm, ml = ms/5

I Another unphysical quark mass, Q almost stuck in this one.

I Did not run light PQ correlators on this one, so “fπ” is at
ms/5

I fcorrected = fsample − 1
2χT V

F ′′
(

1− <Q2>sample

χT V

)
I L=3.09 fm: 1

2χT V
= 0.046

I χPT: F ′′ = −0.033 F

I χPT: χT = 0.121 fm−4, < Q2 >sample /V = 0.097,(
1− <Q2>sample

χT V

)
= 0.20

I ∆f
f

= 0.0003

I cf fractional statistical error on fK/fπ = 0.0016
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Topological susceptibility

I arXiv:1003.5695,
1004.0342

I Really does improve
the gauge
configurations!!

I (Other tests involve
valence quarks)
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Diagonal fields in partially quenched ChPT
I Fields on the diagonal of Φ correspond to non-anomalous

generators, i.e., generators whose supertrace vanishes:

T1 = diag(1,−1, 0, 0, 0, 0, 0)

T2 = diag(1, 1,−2, 0, 0, 0, 0)

T3 = diag(0, 0, 0, 1,−1, 0, 0)

T4 = diag(1, 1, 1,−3/2,−3/2, 0, 0)

T5 = diag(0, 0, 0, 0, 0, 1,−1)

T6 = diag(1, 1, 1, 1, 1, 5/2, 5/2)

I Notation: first 3 entries correspond to sea quarks, the next 2 to valence

quarks, and the last 2 to ghosts.

I T1, T2, T3, T4 are quark-like (“normal”) since have
strT 2

i > 0 ⇒ corresponding fields are real.
I T5, T6 are ghost-like since have strT 2

i < 0 ⇒
corresponding fields are −i × real.
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Autocorrelation of Q

I Two hyp smearings,
then integrate F F̃ .

I τ increases as a
decreases (compare
×,×,×

I τ decreases as m
decreases (compare
×,◦ or ×,◦ .

I Errors in this
section VERY
approximate
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Autocorrelation of Q2

I Don’t usually care
about Q ↔ −Q
(CP), so don’t care
about sign of Q, so
look at
autocorrelation of
Q2.

I Shorter
autocorrelation
times, with same
general pattern
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