Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

Takumi Iritani for HAL QCD Coll.

Stony Brook University

July 28, 2016 @ LATTICE 2016 Ref. TI for HAL Coll., *"Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD"*, [arXiv:1607.06371], PoS(Lattice2015) 089, [arXiv:1511.05246].

S. Aoki, K. Sasaki, D. Kawai, T. Miyamoto (YITP)
T. Doi, T. Hatsuda (RIKEN) • T. Inoue (Nihon Univ.) • N. Ishii, Y. Ikeda, K. Murano (RCNP) • H. Nemura (Univ. of Tsukuba) • S. Gongyo (Univ. of Tours) • F. Etminan (Univ. of Birjand)

1 Baryon interactions from lattice QCD

Direct measurement vs HAL QCD method

- Formalisms
- Direct Measurement
- HAL QCD Measurement

Origin of Fake Signal in Direct Method

1 Baryon interactions from lattice QCD

2 Direct measurement vs HAL QCD method

- Formalisms
- Direct Measurement
- HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

4 Summary

2 Methods for Hadron Interaction from Lattice QCD

QCD **Hadron Interaction** Nuclear Physics

■ Lüscher's finite volume method — Lüscher '86, '91 energy shift of two-particle in "box" > phase shift

$$\Delta E_L = 2\sqrt{k^2 + m^2} - 2m \implies k \cot \delta(k) = \frac{1}{\pi L} \sum_{n \in \mathbb{Z}^3} \frac{1}{|n|^2 - (kL/2\pi)^2}$$

NN Interactions from Lattice QCD

	Lüscher		HAL QCD	phys. point
dineutron $({}^{1}S_{0})$	bound	\Leftrightarrow	unbound	unbound
deuteron $({}^{3}S_{1})$	bound	\Leftrightarrow	unbound	bound

 \Rightarrow inconsistencies between two methods, which is correct?

Today we will clarify the origin of this puzzle

Baryon interactions from lattice QCD

Direct measurement vs HAL QCD method

- Formalisms
- Direct Measurement
- HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

Lüscher's Finite Volume Method

• "energy shift" in finite box L^3

$$\Delta E_L = E_{BB} - 2m_B = 2\sqrt{k^2 + m_B^2 - 2m_B}$$

$$\Rightarrow \text{ phase shift } \delta(k)$$

$$k \cot \delta(k) = \frac{1}{\pi L} \sum_{\boldsymbol{n} \in \mathbb{Z}^3} \frac{1}{|\boldsymbol{n}|^2 - (kL/2\pi)^2}$$

↑ THEORY

PRACTICE — "Direct Method"

• measure: plateau in effective mass $\Delta E_{\rm eff}(t) = \log \frac{R(t)}{R(t+1)} \rightarrow \Delta E_L$

$$R(t) = \frac{G_{BB}(t)}{\{G_B(t)\}^2} \to \exp\left[-\left(E_{BB} - 2m_B\right)t\right]$$

with $G_{BB}(t)(G_B(t))$: BB(B) correlators

• $NN(^1S_0)$ (Yamazaki et al. '12)

Time-dependent HAL QCD Method

■ Nambu-Bethe-Salpeter wave function

$$R(\vec{r},t) \equiv \frac{\left\langle 0|T\{B(\vec{x}+\vec{r},t)B(\vec{x},t)\}\bar{\mathcal{J}}(0)|0\right\rangle}{\{G_B(t)\}^2}$$

= $\sum_n A_n \psi_n(\vec{r}) e^{-(E_n - 2m_B)t} + \mathcal{O}(e^{-(E_{\rm th} - 2m_B)t})$

• with elastic saturation R(r,t) satisfies

$$\left[\frac{1}{4m_B}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right]R(\vec{r}, t) = \int d\vec{r'} U(\vec{r}, \vec{r'})R(\vec{r'}, t)$$

► "potential" using velocity expansion $U(r, r') \simeq V(r)\delta(r - r')$ $V(\vec{r}) = \frac{1}{4m_B} \frac{(\partial/\partial t)^2 R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{(\partial/\partial t) R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{H_0 R(\vec{r}, t)}{R(\vec{r}, t)}$

This method does not require the ground state saturation.

Difficulties in Multi-Baryons

Lüscher's method requires ground state saturation

$$G_{NN}(t) = c_0 \exp(-E_0^{(NN)}t) + c_1 \exp(-E_1^{(NN)}t) + \dots \simeq c_0 \exp(-E_0^{(NN)}t)$$

• S/N problem: [mass number A] × [light quark] × $[t \to \infty]$ $S/N \sim \exp[-A \times (m_N - (3/2)m_\pi) \times t]$

 \bullet smaller gap of scattering state: $\Delta E \sim \vec{p}^{\;2}/m \sim \mathcal{O}(1/L^2)$

Contamination of Scattering State and Fake Plateau Example

$$R(t) = b_0 e^{-\Delta E_{\rm BB}t} + b_1 e^{-\delta E_{\rm el}t} + c_0 e^{-\delta E_{\rm inel}t}$$

with $\delta E_{\rm el} - \Delta E_{\rm BB} = 50 \text{ MeV} \sim \mathcal{O}(1/L^2)$, $\delta E_{\rm inel} - \Delta E_{\rm BB} = 500 \text{ MeV} \sim \mathcal{O}(\Lambda_{\rm QCD})$

- g.s. saturation $\Delta E_{\rm BB}^{\rm eff}(t) - \Delta E_{\rm BB} \rightarrow 0$
- \bullet elastic saturation $t\sim 1~{\rm fm}$
- few % of contamination \Rightarrow "mirage" of plateau around $t \sim 1 - 1.5$ fm much larger t for true g.s.

⇒ a true ground state can be checked by quark source dependence
 ► HAL QCD — scattering state are not noises, but signals

Lattice Setup: Wall Source and Smeared Source $\Box \equiv \equiv$ interaction from both direct and HAL QCD methods

□ CHECK 2 quark sources — mixture of excited states are different

- wall source standard of HAL QCD
- smeared source standard of direct method[†]

 \blacksquare setup — 2+1 improved Wilson + Iwasaki gauge[†]

- lattice spacing: a = 0.08995(40) fm, $a^{-1} = 2.194(10)$ GeV
- lattice volume: $32^3 \times 48$, $40^3 \times 48$, $48^3 \times 48$, and $64^3 \times 64$

 $m_{\pi}=0.51~{\rm GeV},~m_{N}=1.32~{\rm GeV},~m_{K}=0.62~{\rm GeV},~m_{\Xi}=1.46~{\rm GeV}$

† Yamazaki-Ishikawa-Kuramashi-Ukawa, arXiv:1207.4277.

cf. $\Delta E < 0 \implies$ binding or $\Delta E = 0 \implies$ scattering

Generalized Sink Operator

$$C_{\Xi\Xi}^{(g)}(t) = \sum_{\vec{r}} g(|\vec{r}|) \sum_{\vec{R}} \langle \Xi(\vec{R} + \vec{r}, t) \Xi(\vec{R}, t) \overline{\mathcal{J}_{\Xi\Xi}}(t=0) \rangle \to \exp(-E_{\Xi\Xi}t)$$

 \Rightarrow g.s. energy does not depend on g(r)

• g(r) = 1: standard sink operator

• $g(r) = 1 + A \exp(-Br)$: exp-type projection Smeared Src.

one can make any "fake plateau"

Wall Src.

HAL: Potential of $\Xi\Xi({}^{1}S_{0})$ Smeared Src. vs Wall Src.

NBS wavefunction: $R^{\text{smear}}(r,t)$ or $R^{\text{wall}}(r,t)$

$$V_c(r) = \frac{1}{4m} \frac{(\partial^2/\partial t^2)R(r,t)}{R(r,t)} - \frac{(\partial/\partial t)R(r,t)}{R(r,t)} - \frac{H_0R(r,t)}{R(r,t)}$$

HAL: Potential of $\Xi\Xi({}^{1}S_{0})$ Smeared Src. vs Wall Src.

Residual Diff. of Pot.: Next Leading Order Correction Derivative expansion: $U(r, r') = \{V_0(r) + V_1(r)\nabla^2\}\delta(r - r')$ (for ¹S₀)

$$\left[\frac{1}{4m}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right]R(r,t) = \int d^3r' U(r,r')R(r',t)$$

$$\simeq V_0(r)R(r,t) + V_1(r)\nabla^2 R(r,t) + \cdots$$

 R^{smear} and $R^{\text{wall}} \implies V_0(r)$ and $V_1(r)$ **HAL method works** — quark src. independent w/o g.s. saturation

HAL meets Lüscher: Energy Shift from Potential

 HAL QCD works well w/o g.s. saturation problem use potential ⇒ true "energy shift" in finite volume

- Eigenequation in finite box L^3 with HAL QCD potential $V(ec{r})$

$$[H_0 + V]\psi = \Delta E\psi$$

 \square eigenvalue $\Delta E_0 \propto 1/L^3 \longrightarrow 0 \Rightarrow$ scattering by Lüscher's formula

Baryon interactions from lattice QCD

2 Direct measurement vs HAL QCD method

- Formalisms
- Direct Measurement
- HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

Wavefunction, Potential, Eigenvalues and EienfunctionsNBS wave functionPotential

Excited States in Wavefunction

R-corr. decomposition by energy eigenmodes $R^{\text{wall/smear}}(\vec{r},t) = \sum a_n^{\text{wall/smear}} \Psi_n(\vec{r},t) \exp\left(-\Delta E_n t\right)$ $\therefore R(\vec{p} = 0, t) = \sum R(\vec{r}, t) = \sum b_n^{\text{wall/smear}} e^{-\Delta E_n t}$ "contamination" of excited states b_n/b_0 \Box ex. 1st excited state 1E+000 48^3 wall:+ wall source $\begin{array}{c|c} |b_n/b_0| \stackrel{\mathcal{Z}}{=} \mathbb{Z}[^1 \mathbf{S}_0) \text{ at } t = 1\\ 0 \quad \text{ or } & \text{ if } \end{array}$ $b_1/b_0 \ll 0.01$ 48^3 smear:+ smeared source T φ $b_1/b_0 \simeq -0.1$ T with energy gap $E_1 - E_0 \simeq 50 \text{ MeV}$ 1E-06 for $L^3 = 48^3$ 0 50 200 250 100150 $\Delta E_{\rm n}$ [MeV]

Origin of Fake Plateau — Contamination of Excited States

$$\Delta E_{\text{eff}}(t) \equiv \log \frac{R(p=0,t)}{R(p=0,t+1)} = \log \frac{\sum_{n} b_n \exp\left(-\Delta E_n t\right)}{\sum_{n} b_n \exp\left(-\Delta E_n (t+1)\right)}$$

"direct measurement" — reproduced by low-lying modes[†]

† eigenvalues ΔE_n , coefficients $b_n^{\text{smear/wall}}$ for n = 0, 1, 2, at t = 14.

Origin of Fake Plateau — Contamination of Excited States

$$\Delta E_{\text{eff}}(t) \equiv \log \frac{R(p=0,t)}{R(p=0,t+1)} = \log \frac{\sum_{n} b_n \exp\left(-\Delta E_n t\right)}{\sum_{n} b_n \exp\left(-\Delta E_n (t+1)\right)}$$

■ "direct measurement" — reproduced by low-lying modes[†]
□ g.s. saturation of smeared source — 100 lattice units ~ 10 fm !!!

† eigenvalues ΔE_n , coefficients $b_n^{\text{smear/wall}}$ for n = 0, 1, 2, at t = 14.

Baryon interactions from lattice QCD

2 Direct measurement vs HAL QCD method

- Formalisms
- Direct Measurement
- HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

Summary: Lüscher Direct vs HAL QCD

- "Direct method" ground state saturation is extremely difficult
 - scattering states ⇒ "fake plateau" > Wrong Conclusion!
 - much smaller gap & larger noise @ phys. pt. \Rightarrow almost impossible
- HAL QCD works well without g.s. saturation HAL QCD ⇒ "correct" ΔE_L and input of Lüscher's formula
 NBS corr. + "potential" ⇒ excited states contamination and origin of fake plateau.
- (even if you do not trust HAL QCD method)
 fake plateau can be checked by Lüscher's formula
 Aoki's Talk

 Pot. with wall src.
 explain ⊿Eeff(t)
 Direct with wall src.

 NLO pot. corr.
 Conflict
 Fake plateaux

 Pot. with smear src.
 Direct with smear src.

Demo: Contamination of Scattering State Mock up data

$$R(t) = b_0 e^{-\Delta E_{\rm BB}t} + b_1 e^{-\delta E_{\rm el}t} + c_0 e^{-\delta E_{\rm inel}t}$$

with $\delta E_{\rm el} - \Delta E_{\rm BB} = 50 \text{ MeV} \sim \mathcal{O}(1/L^2)$, $\delta E_{\rm inel} - \Delta E_{\rm BB} = 500 \text{ MeV} \sim \mathcal{O}(\Lambda_{\rm QCD})$

- g.s. saturation around $t \rightarrow 10$ fm
- fake plateau around $t\sim 1~{\rm fm}$

•

 $\Xi\Xi({}^{3}\mathsf{S}_{1})$

relativistic op. and non-rela. op. (NR)

 $NN(^{1}\mathsf{S}_{0})$

I

 $NN(^{3}\mathsf{S}_{1})$

I

Triton

relativistic op. and non-rela. op. (NR)

Helium

relativistic op. and non-rela. op. (NR)

$\Delta E_{\text{eff}}(t) = E_{\Xi\Xi}^{\text{eff}}(t) - 2m_{\Xi}^{\text{eff}}(t)$: Smeared Src. vs. Wall Src.

 $\Xi\Xi({}^{1}\mathsf{S}_{0})$ is Unbound at $m_{\pi}=510$ MeV

$$k \cot \delta(k) = \frac{1}{\pi L} \sum_{n \in \mathbb{Z}^3} \frac{1}{|n|^2 - (kL/2\pi)^2}, \qquad \Delta E = 2\sqrt{m^2 + k^2} - 2m$$
volume dep. of ΔE_0
phase shift δ

$$\int_{-2}^{-1} \int_{-2}^{-1} \int_{-2}^$$

t-depenence of Potential

t-dependence of Wall Src. potential is stable

Time-dependent HAL QCD Method

■ space-time correlation function

$$R(\vec{r},t) \equiv \left\langle 0|T\{B(\vec{x}+\vec{r},t)B(\vec{x},t)\}\bar{\mathcal{J}}(0)|0\right\rangle / \{G_B(t)\}^2 \\ = \sum_n A_n \psi_n(\vec{r}) e^{-(E_n - 2m_B)t} + \mathcal{O}(e^{-(E_{\rm th} - 2m_B)t})$$

 $\Box \text{ each } \psi_n(\vec{r})e^{-E_nt} \equiv \langle 0|T\{B(\vec{x}+\vec{r},t)B(\vec{x},t)\}|2B,n\rangle \text{ satisfies} \\ \left[\frac{k_n^2}{m_B} - H_0\right]\psi_n(\vec{r}) = \int d\vec{r'} U(\vec{r},\vec{r'})\psi_n(\vec{r'})$

with non-local interaction kernel $U(ec{r},ec{r'})$

R-corr. satisfies t-dep. Schrödinger-like eq. with elastic saturation

$$\left[\frac{1}{4m_B}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right]R(\vec{r}, t) = \int d\vec{r'} U(\vec{r}, \vec{r'})R(\vec{r'}, t)$$

> "potential" using velocity expansion $U(r,r') \simeq V(r)\delta(r-r')$

$$V(\vec{r}) = \frac{1}{4m_B} \frac{(\partial/\partial t)^2 R(\vec{r},t)}{R(\vec{r},t)} - \frac{(\partial/\partial t) R(\vec{r},t)}{R(\vec{r},t)} - \frac{H_0 R(\vec{r},t)}{R(\vec{r},t)}$$

This method does not require the ground state saturation.

HAL: Wave Function and $\Xi\Xi({}^{1}S_{0})$ Potential $V_{c}(\vec{r})$

Next Leading Order of Derivative Expansion Derivative expansion: $U(r, r') = \{V_0(r) + V_1(r)\nabla^2\}\delta(r - r')$ (for ¹S₀)

$$\begin{bmatrix} \frac{1}{4m} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \end{bmatrix} R(r,t) = \int d^3 r' U(r,r') R(r',t)$$

$$\cdot \frac{1}{4m} \frac{(\partial^2/\partial t^2)R}{R} - \frac{(\partial/\partial t)R}{R} - \frac{H_0 R}{R} = V_0(r) + V_1(r) \frac{\nabla^2 R(r,t)}{R(r,t)} \equiv \tilde{V}_{\text{eff}}(r,t)$$

$$\cdot R^{\text{smear}} \text{ and } R^{\text{wall}}$$

$$\begin{cases} V_0(r) + V_1(r) \nabla^2 R^{\text{smear}} / R^{\text{smear}} = \tilde{V}_{\text{eff}}^{\text{smear}}(r,t_{\text{smear}}) \\ V_0(r) + V_1(r) \nabla^2 R^{\text{wall}} / R^{\text{wall}} = \tilde{V}_{\text{eff}}^{\text{wall}}(r,t_{\text{wall}}), \end{cases}$$

$$\cdot \text{ LO } V_0(r) \text{ and NLO } V_1(r) \text{ potentials are given by}$$

$$V_1(r) = \frac{\tilde{V}_{\text{eff}}^{\text{smear}}(r, t_{\text{smear}}) - \tilde{V}_{\text{eff}}^{\text{wall}}(r, t_{\text{wall}})}{\nabla^2 R^{\text{smear}} / R^{\text{smear}} - \nabla^2 R^{\text{wall}} / R^{\text{wall}}}$$

 $V_0(r) = \tilde{V}_{\text{eff}}^{\text{smear}}(r, t_{\text{smear}}) - V_1(r) \frac{\nabla^2 R^{\text{smear}}}{R^{\text{smear}}}.$