Systematic study of operator dependence in nucleus calculation at large quark mass

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

K.-I. Ishikawa, Y. Kuramashi, and A. Ukawa for PACS Collaboration

Lattice 2016 @ University of Southampton, July 24-30 2016

Outline

- Introduction
- Simulation parameter
- Calculation method of nuclei in lattice QCD
- Preliminary result of $N_f = 2 + 1 \ m_{\pi} = 0.7 \ \text{GeV}$
- Preliminary result of $N_f = 0 \ m_{\pi} = 0.8 \ {\rm GeV}$
- Summary and future work

Nucleus calculated from exponential and gaussian sources

Nucleus calculated from exponential and gaussian sources

HALQCD: Wall source gives correct ΔE , but others are incorrect

HALQCD: Wall source gives correct ΔE , but others are incorrect

figures from slide by Iritani at INT workshop "Nuclear Physics from Lattice QCD"

Solid curves

expected t dependence of effective ΔE by HALQCD potential

- \rightarrow Wall source is almost flat.
- $\rightarrow \Delta E$ of Wall source $\approx \Delta E$ from HALQCD potential

Purpose

Investigate difference of ΔE_{NN} between Exponential and Wall sources at large m_{π} ($m_{\pi} \ge 0.7$ GeV) in $N_f = 2 + 1$ and $N_f = 0$

Why large m_{π} and $N_f = 0$?

1. high precision calculation

pilot study of $N_f = 0$ $m_{\pi} = 0.8$ GeV [PRD84:054506(2011)] decided not to adopt wall source \Leftarrow hard to obtain ΔE_{NN} in plateau region

2. no qualitative difference from smaller m_{π} and $N_f = 2 + 1$ in our previous studies

Simulation parameter

 $N_f = 2 + 1 \ m_\pi = 0.7 \ {
m GeV} \ \beta = 1.90, \ a^{-1} = 2.194 \ {
m GeV}$

Iwasaki gauge + non-perturbative O(a)-improved Wilson fermion actions

same action as '10 PACS-CS, PRD86:074514(2012); PRD92:014501(2015)

 $N_f = 0 \ m_{\pi} = 0.8 \ \text{GeV} \ \beta = 2.416, \ a^{-1} = 1.541 \ \text{GeV}$

Iwasaki gauge + tadpole imporved Wilson fermion actions

same action as '02 CP-PACS, PRD81:111504(R)(2010); PRD84:054506(2011)

Focus on NN ³S₁ channel

N_{f}	L	T	source	$N_{\sf meas}$
2+1	32	48	Exp	204800
			Wall	110400
0	16	64	Exp ₁	1600000
			Exp ₂	3200000
			Wall	1920000

Exp and Wall sources with point sink (each N with p = 0)

All results are preliminary.

Computational resources (HPCI System Research Project: hp160124) COMA (U. of Tsukuba), FX10 and Reedbush (U. of Tokyo), Tatara (Kyushu U.)

Calculation method of multi-nucleon bound state

Traditional method nucleon

$$C_N(t) = \langle 0|N(t)\overline{N}(0)|0\rangle = \sum_n \langle 0|N|n\rangle \langle n|\overline{N}|0\rangle e^{-E_n^N t} \xrightarrow[t\gg1]{} A_0^N e^{-m_N t}$$

NN channel

$$C_{NN}(t) = \langle 0|O_{NN}(t)\overline{O}_{NN}(0)|0\rangle = \sum_{n} \langle 0|O_{NN}|n\rangle \langle n|\overline{O}_{NN}|0\rangle e^{-E_{n}^{NN}t}$$
$$\xrightarrow[t\gg1]{} A_{0}^{NN} e^{-E_{0}^{NN}t}$$

Ratio of correlation functions

$$R(t) = \frac{C_{NN}(t)}{(C_N(t))^2} \xrightarrow[t \gg 1]{} A e^{-\Delta E_{NN}t}, \quad \Delta E_{NN} = E_0^{NN} - 2m_N$$

Important condition

 $C_N(t)$ and $C_{NN}(t)$ in $t \gg 1$ are written by each ground state $\rightarrow \Delta E_{NN}$ obtained from plateau region for $C_N(t)$ and $C_{NN}(t)$

$R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 2 + 1$

 $R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 2 + 1$ Effective mass and energy Preliminary result: $N_f =$

vertical dashed line : plateau starts expressed by $t_{plateau}$

Preliminary result: $N_f = 2 + 1 \ m_{\pi} = 0.7 \ \text{GeV}$

Effective energy shift ΔE_{NN}

$$\operatorname{og}\left(\frac{R(t)}{R(t+1)}\right)$$
 with $R(t) = \frac{C_{NN}(t)}{(C_N(t))^2}$

Plateau in Exp Short flat region in Wall

Preliminary result: $N_f = 2 + 1 \ m_{\pi} = 0.7 \ \text{GeV}$

Effective energy shift ΔE_{NN}

$$\log\left(\frac{R(t)}{R(t+1)}\right) \text{ with } R(t) = \frac{C_{NN}(t)}{(C_N(t))^2}$$

Short flat region of Wall

in $t \ll t_{\text{plateau}}$

$$R(t)$$
 in $N_f = 2 + 1$

Preliminary result: $N_f = 2 + 1 \ m_{\pi} = 0.7 \ \text{GeV}$

Effective energy shift ΔE_{NN} $\log\left(\frac{R(t)}{R(t+1)}\right)$ with $R(t) = \frac{C_{NN}(t)}{(C_N(t))^2}$

Short flat region of Wall in $t \ll t_{\text{plateau}}$ = ΔE_{NN}^W

HALQCD found $\Delta E_{NN}^W \approx \Delta E_{NN}$ from HALQCD potential \rightarrow other smearing results are incorrect

Our understanding: ΔE_{NN}^W does not reach plateau region. \rightarrow to obtain true ΔE_{NN} from Wall, need much larger t behavior clearly While, Exp smearing : ΔE_{NN} determined in $t \gtrsim t_{\text{plateau}}$

$N_f=0~m_{\pi}=0.8~{\rm GeV}$ in L=16

- \bullet more accurate data \rightarrow closer to plateau region in wall source
- (relatively) smaller volume \rightarrow (relatively) larger overlap to bound state in wall source

$R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 0$ at L = 16

reasonably consistent plateaus from Exp_1 and Exp_2

$R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 0$ at L = 16

vertical dashed line : plateau starts expressed by $t_{\rm plateau}$

though plateau of E_{NN} not clear in Wall

Preliminary result: $N_f = 0 \ m_{\pi} = 0.8 \ \text{GeV}$

$$\log\left(\frac{R(t)}{R(t+1)}\right) \text{ with } R(t) = \frac{C_{NN}(t)}{\left(C_{N}(t)\right)^{2}}$$

Plateau in $Exp_{1,2}$ No plateau before $t_{plateau}$ in Wall Wall approaches to plateau of $Exp_{1,2}$

8-b

Volume dependence of ΔE_{NN} from Exp in $N_f = 0$ Preliminary result: $N_f = 0$ $m_{\pi} = 0.8$ GeV

open symbols and dashed line : previous result PRD84:054506(2011)

Exp₁ result not inconsistent with fit curve of previous work including finite volume effect of binding energy

'04 Beane et al., '06 Sasaki & TY

Volume dependence of effective ΔE_{NN} of wall source in $N_f = 0 \ m_\pi = 0.8 \ {\rm GeV}$

Expected behavior of wall source in larger volume

- Harder to obtain clear effective ΔE_{NN} in plateau region
 - 1. plateau of effective $m_N \rightarrow \text{larger } t$
 - 2. plateau of effective $E_{NN} \rightarrow$ larger t

larger overlap to 1st excited state ($p \sim 0$ scattering state) maybe similar to $\pi(p)\pi(-p)$ correlator with $p = 2\pi/L$ [CP-PACS, PRD67 (2003) 014502]

 \Rightarrow relatively smaller overlap to ground state (bound state)

Expected behavior of wall source in larger volume

- Harder to obtain clear effective ΔE_{NN} in plateau region
 - 1. plateau of effective $m_N \rightarrow \text{larger } t$
 - 2. plateau of effective $E_{NN} \rightarrow \text{larger } t$ larger overlap to 1st excited state ($p \sim 0$ scattering state) maybe similar to $\pi(p)\pi(-p)$ correlator with $p = 2\pi/L$ [CP-PACS, PRD67 (2003) 014502] \Rightarrow relatively smaller overlap to ground state (bound state)
- Effective $\Delta E_{NN} > 0$ in middle t

Expected behavior of wall source in larger volume

- Harder to obtain clear effective ΔE_{NN} in plateau region
 - 1. plateau of effective $m_N \rightarrow \text{larger } t$
 - 2. plateau of effective $E_{NN} \rightarrow \text{larger } t$ larger overlap to 1st excited state ($p \sim 0$ scattering state) maybe similar to $\pi(p)\pi(-p)$ correlator with $p = 2\pi/L$ [CP-PACS, PRD67 (2003) 014502] \Rightarrow relatively smaller overlap to ground state (bound state)
- Effective $\Delta E_{NN} > 0$ in middle t

Bound state exists $\Rightarrow \Delta E_{NN} > 0$ in 1st excited state ($a_0 < 0$) Large enough volume

region of t	small	middle	large
effective ΔE_{NN}	negative	positve	negative
dominat state in C_{NN}	several	1st excited	ground

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 m_{\pi} = 0.8 \text{ GeV}$

Clear volume dependence + bowl like structure in small t

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$

Clear volume dependence + bowl like structure in small tPick up smallest value in small t region on each volume \rightarrow Similar to $1/L^3$ behavior

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$

Clear volume dependence + bowl like structure in small tPick up smallest value in small t region on each volume \rightarrow Similar to $1/L^3$ behavior \Leftarrow Not ΔE_{NN} of ground state Ground state should be obtained from $t > t_{\text{plateau},L=16}$.

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$

Clear volume dependence + bowl like structure in small tPick up smallest value in small t region on each volume \rightarrow Similar to $1/L^3$ behavior \Leftarrow Not ΔE_{NN} of ground state Ground state should be obtained from $t > t_{\text{plateau},L=16}$. Upward behavior in larger volume might be caused by

1st excited state contribution

Summary and future work

Exponential and wall sources in NN ${}^{3}S_{1}$ channel

$$N_f = 2 + 1 \ m_{\pi} = 0.7 \text{ GeV}$$
 and $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$

Wall source

- hard to observe plateau of m_N and $E_{NN}
 ightarrow \Delta E_{NN}$
- effective ΔE_{NN} approaches exponetial result in L = 16
 - \rightarrow will be consistent with each other in plateau region
- \bullet bowl like structure in effective ΔE_{NN} before plateau region

Exponential source

• possible to determine ΔE_{NN} in plateau region for $C_N(t)$ and $C_{NN}(t)$ (by tuning smearing parameters in principle)

Need further investigations

check consistency of ΔE_{NN} from exponential and wall sources, more sophisticated calculation (GEVP), observing effective $\Delta E_{NN} > 0$ in wall source(?), ...

Back up

Volume dependence of ΔE_{NN} in $N_f = 0$

Preliminary result: $N_f = 0 \ m_{\pi} = 0.8 \ \text{GeV}$

open symbols and dashed line : previous result PRD84:054506(2011)

Exp₁ result not inconsistent with fit curve of previous work including finite volume effect of binding energy

'04 Beane et al., '06 Sasaki & TY

R(t) in $N_f = 0$ at L = 20

Preliminary result: $N_f = 0 \ m_{\pi} = 0.8 \ \text{GeV}$

Effective energy shift ΔE $\log\left(\frac{R(t)}{R(t+1)}\right)$ with $R(t) = \frac{C_{NN}(t)}{(C_N(t))^2}$