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aim of the talk

*

*



the emission of virtual photons at leading order in the e.m. coupling is evaluated on the lattice

the subtraction of the infrared divergence is computed for a point-like meson using the finite lattice volume as the infrared regulator

the emission of virtual+real photons from a point-like meson is added using a photon mass for the infrared regularization

basic steps of the procedure [PRD91 (2015) 074506]

1)
2)

3)

master formula for the leptonic decay rate

 
Γ PS→ ℓν γ[ ]( ) = Γ(tree) PS→ ℓν( ) ⋅RPS ΔEγ( )

 
tree level:    Γ(tree) PS→ ℓν( ) = GF
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short-distance e.w. correction 
not included in GF (μ lifetime)

e.m. correction (virtual + real photons up 
to energy ΔEγ) for a point-like PS meson 
(using a photon mass as IR regulator)

virtual  photon  emissions  calculated 
on  the  lattice  (using  the  lattice 
volume as IR regulator)

δAPS  and δΓ pt ΔEγ( )  are separately IR finite and indepedent on the specific IR regularization*
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Lπ−l−νl ¼ iGFfπV"
udfð∂μ − ieAμÞπg

!
ψ̄ νl

1þ γ5
2

γμψl

"

þ Hermitian conjugate: ð39Þ

The corresponding Feynman rules are

ð40Þ

In addition we have used the standard Feynman rules of
scalar electromagnetism for the interactions of charged
pions in an electromagnetic field.
We start by giving the OðαÞ contributions to Γα;pt

0 .
(i) Wave-function renormalization of the pion: The

contribution of the pion wave function renormaliza-
tion to Γα;pt

0 is obtained from the diagrams in Fig. 8
and is given by

Γπ
0 ¼ Γtree

0 ×
α
4π

Zπ;

where Zπ ¼ −2 log
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−
3

2
:

ð41Þ

These diagrams correspond to those in Figs. 5(a),
5(b) and 5(c) in the composite case.

(ii) π-l vertex: The remaining graphs contributing to
Γα;pt
0 are the π-l vertex corrections from the dia-

grams shown in Fig. 9 and their complex conjugates.
The contribution from these diagrams is

Γπ−l
0 ¼ Γtree

0 ×
α
4π

Zπ−l; where ð42Þ
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1 − r2l
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π
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1 − r2l

log2ðr2lÞ þ 2
1 − 3r2l
1 − r2l

logðr2lÞ − 1;

ð43Þ

and rl ¼ ml=mπ . These diagrams correspond to
diagrams Figs. 5(e) and 5(f) in the composite pion
case.
Next we give the contributions to Γ1ðΔEÞ where

the real photon is emitted and absorbed by the pion
(ππ), the charged lepton (ll) or emitted by the pion
and absorbed by the lepton or vice versa (πl).
The results are presented in the Feynman gauge,

X

r

ε⋆μðk; rÞενðk; rÞ ¼ gμν; ð44Þ

where εμðk; rÞ are the polarization vectors of the real
photon carrying a momentum k, with k2 ¼ 0 in
Minkowski space.

(iii) Real photon emission, ππ: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the pion, represented by diagram (a) in
Fig. 10, is given by

Γππ
1 ¼ Γtree

0 ×
α
4π

ðRππ
1 þ Rππ

2 Þ; where ð45Þ

Rππ
1 ¼ 2 log

#
m2

γ

4ΔE2

$
þ 4;

Rππ
2 ¼ 2r4l

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð6 − rE − 4r2lÞ
ð1 − r2lÞ2

;

ð46Þ

rE ¼ 2ΔE=mπ and 0 ≤ rE ≤ 1 − r2l. Here we have
separated Rππ

1 , the contribution in the eikonal
approximation, from Rππ

2 which vanishes as
ΔE → 0. In the eikonal approximation only the
leading terms in the photon’s momenta are kept in
the numerator and denominator of the integrand as
rE → 0. Rππ

1 contains the infrared divergence.

FIG. 8. One loop diagrams contributing to the wave-function
renormalization of a pointlike pion.

FIG. 9. Radiative corrections to the pion-lepton vertex. The diagrams representOðαÞ contributions to Γpt
0 . The left part of each diagram

represents a contribution to the amplitude and the right part the tree-level contribution to the Hermitian conjugate of the amplitude.
The corresponding diagrams containing the radiative correction on the right-hand side of each diagram are also included.
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(iv) Real photon emission, ll: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the charged lepton, represented by
diagram (b) in Fig. 10, is given by

Γll
1 ¼ Γtree

0 ×
α
4π

ðRll
1 þ Rll

2 Þ; where ð47Þ

Rll
1 ¼ 2 log

!
m2

γ

4ΔE2

"
− 2

1þ r2l
1− r2l

logðr2lÞ; and

Rll
2 ¼ r2E − 1þð4rE− 6Þr2l

ð1− r2lÞ2
logð1− rEÞ

−
rEðrEþ 4r2lÞ
ð1− r2lÞ2

logðr2lÞþ
rEð6− 3rE− 20r2lÞ

2ð1− r2lÞ2
:

ð48Þ

(v) Real photon emission, πl: Finally, the contribution
to Γ1ðΔEÞ from the emission of a real photon
from the pion and its absorption by the charged
lepton, represented by diagrams (c)–(f) in Fig. 10, is
given by

Γπl
1 ¼ Γtree

0 ×
α
4π

ðRπl
1 þ Rπl

2 Þ; ð49Þ

where

Rπl
1 ¼2

1þr2l
1−r2l

logðr2lÞ log
!

m2
γ

4ΔE2

"
−
1þr2l
1−r2l

½logðr2lÞ&2

−4
1þr2l
1−r2l

Li2ð1−r2lÞ and

Rπl
2 ¼−2

2rEþr4l−2

ð1−r2lÞ2
logð1−rEÞþ

4rE
ð1−r2lÞ2

logðr2lÞ

þrEð2þrEÞ
ð1−r2lÞ2

−4
1þr2l
1−r2l

Li2ðrEÞ: ð50Þ

Note that for diagrams (c), (d) and (e) we include the
conjugate contribution in which the photon vertices
are interchanged between the left and right parts of
the diagrams. Thus for example, in addition to
diagram (c) there is the diagram in which the photon
is emitted from the lepton on the left and absorbed
on the pion on the right.

We are now in a position to combine the results in
Eqs. (41)–(50) in order to obtain the final expression for
ΓptðΔEÞ. As expected the infrared cutoff cancels and
we find

ΓptðΔEÞ ¼ Γtree
0 ×

!
1þ α

4π

#
3 log

!
m2

π

M2
W

"
þ logðr2lÞ − 4 logðr2EÞ þ

2 − 10r2l
1 − r2l

logðr2lÞ − 2
1þ r2l
1 − r2l

logðr2EÞ logðr2lÞ

− 4
1þ r2l
1 − r2l

Li2ð1 − r2lÞ − 3þ
$
3þ r2E − 6r2l þ 4rEð−1þ r2lÞ

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð4 − rE − 4r2lÞ
ð1 − r2lÞ2

logðr2lÞ

−
rEð−22þ 3rE þ 28r2lÞ

2ð1 − r2lÞ2
− 4

1þ r2l
1 − r2l

Li2ðrEÞ
%&"

: ð51Þ

Note that the terms in square brackets in Eq. (51) vanish when rE goes to zero; in this limit ΓptðΔEÞ is given by its eikonal
approximation.

FIG. 10. Diagrams contributing to Γ1ðΔEÞ. For diagrams (c), (d) and (e) the “conjugate” contributions in which the photon vertices on
the left and right of each diagram are interchanged are also to be included. The labels (a)–(f) are introduced to identify the individual
diagrams when describing their evaluation in the text.
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calculation of δΓpt(ΔEγ)

δΓ pt ΔEγ( ) = δΓ0pt +δΓ1pt ΔEγ( ) the sum is IR finite (Bloch-Nordsieck mechanism)

* virtual photons δΓ0pt

* real photons δΓ1pt(ΔEγ)

ΔEγ ~ 10-20 MeV
for the point-like assumption to be valid 

[PRD91 (2015) 074506]

 rℓ = mℓ MPS , rE = 2ΔEγ MPS

��pt
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where r` ⌘ m`/MPS and rE ⌘ 2�E/MPS.
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Cϕϕ
0 ðtÞ≡

X

~x

h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

!
1 −

m2
l

m2
π

"
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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attached at both ends to the quarks [diagrams 5(a)–5(c) and
6(a), (b), (d) and (e)], those in which the photon propagates
between one of the quarks and the outgoing lepton
[diagrams 5(e), 5(f) and 6(c)] and finally diagram 5(d)
which corresponds to the mass and wave-function nor-
malization of the charged lepton. We have already dis-
cussed the treatment of the wave-function renormalization
of the lepton in detail in Sec. III so we now turn to the
remaining diagrams.

1. The evaluation of diagrams Figs. 5(a)–5(c) and
Figs. 6(a), 6(b), 6(d) and 6(e)

We start by considering the connected diagrams
5(a)–5(c). For these diagrams, the leptonic contribution
to the amplitude is contained in the factor
½ūνlðpνlÞγ

νð1 − γ5ÞvlðplÞ$, and we need to compute the
Euclidean hadronic correlation function

C1ðtÞ ¼ −
1

2

Z
d3~xd4x1d4x2

× h0jTfJνWð0Þjμðx1Þjμðx2Þϕ†ð~x;−tÞgj0iΔðx1; x2Þ;
ð24Þ

where T represents time ordering, JνW is the V-A current
d̄γνð1 − γ5Þu and we take −t < 0. jμ is the hadronic
component of the electromagnetic current, and we find it
convenient to include the charges of the quarks Qf in the
definition of j,

jμðxÞ ¼
X

f

Qff̄ðxÞγμfðxÞ; ð25Þ

where the sum is over all quark flavors f. The factor of 1=2
is the standard combinatorial one.
The computations are performed in Euclidean space

and in a finite volume with the photon propagator Δ given
in Eq. (23) (or the corresponding expression for other
lattice discretizations). The absence of the zero mode in the
photon propagator implies a gap between mπ and the
energies of the other eigenstates. Provided one can separate
the contributions of these heavier states from that of the
pion, one can perform the continuation of the correlation
function in Eq. (24) from Minkowski to Euclidean space
without encountering any singularities. From the correla-
tion function C1ðtÞ we obtain the electromagnetic shift in
the mass of the pion and also a contribution to the physical
decay amplitude, as we now explain. For sufficiently large t
the correlation function is dominated by the ground state,
i.e. the pion, and we have

C0ðtÞ þ C1ðtÞ≃ e−mπt

2mπ
Zϕh0jJ0Wð0Þjπþi; ð26Þ

where the electromagnetic terms are included in all factors
[up to OðαÞ]. Writing mπ ¼ m0

π þ δmπ , where δmπ is the
OðαÞ mass shift,

e−mπ t ≃ e−m
0
π tð1 − δmπtÞ ð27Þ

so that C1ðtÞ is of the schematic form

C1ðtÞ ¼ C0ðtÞðc1tþ c2Þ: ð28Þ

By determining c1 we obtain the electromagnetic mass shift,
δmπ ¼ −c1, and from c2 we obtain the electromagnetic

FIG. 6. Disconnected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The curly line represents the photon,
and a sum over quark flavors q, q1 and q2 is to be performed. The labels (a)–(e) are introduced to identify the individual diagrams when
describing their evaluation in the text.
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calculation of δAPS

connected diagrams

virtual photons between quarks 
and/or lepton

disconnected diagrams

quenched QED

efsea = 0

adopted in this work



all the relevant correlation functions calculated thanks to the

PRACE project Pra10_2693: “QED corrections to meson decay rates in LQCD”

18 Mcore-hours on the BG/Q system Fermi at Cineca (Italy), April 2015 - March 2016

gauge ensembles from the European Twisted Mass Collaboration (ETMC)

Nf = 2+1+1 dynamical sea quarks 

three values of the lattice spacing: 
a ~ 0.0885 (36), 0.0815 (30), 

0.0619 (18) fm

lattice sizes from 1.8 to 3 fm
3 < Mπ L < 6

pion masses from 225 to 500 MeV

the strange quark mass at each β is 
calculated  using  the  physical  ms  
mass and Zm obtained by ETMC in 
NPB 887 (2014)

ETMC gauge ensembles

ensemble � V/a4 aµsea = aµ` aµ� aµ� Ncfg aµs M⇡+ MK+ L M⇡L

(MeV) (MeV) (fm)

A30.32 1.90 323 ⇥ 64 0.0030 0.15 0.19 150 0.0236 278 564 2.9 4.0

A40.32 0.0040 100 318 573 4.6

A50.32 0.0050 150 351 581 5.1

A40.24 243 ⇥ 48 0.0040 150 325 579 2.1 3.5

A60.24 0.0060 150 387 594 4.2

A80.24 0.0080 150 444 615 4.8

A100.24 0.0100 150 496 636 5.4

A40.20 203 ⇥ 48 0.0040 150 331 583 1.8 3.0

B25.32 1.95 323 ⇥ 64 0.0025 0.135 0.170 150 0.0209 261 542 2.6 3.5

B35.32 0.0035 150 304 551 4.1

B55.32 0.0055 150 377 574 5.0

B75.32 0.0075 80 438 596 5.8

B85.24 243 ⇥ 48 0.0085 150 468 609 2.0 4.7

D15.48 2.10 483 ⇥ 96 0.0015 0.12 0.1385 100 0.0161 226 526 3.0 3.4

D20.48 0.0020 100 257 529 3.9

D30.48 0.0030 100 313 546 4.8

Table 1: Values of the simulated sea and valence quark bare masses for the 16 gauge

ensembles used in our PRACE project (see Ref. [1]).
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- Wilson twisted-mass action for sea and valence up/down quarks, Osterwalder-Seiler action for valence strange (and charm) quark

- Iwasaki action for the gluons

- maximal twist guarantees an automatic O(a)-improvement for the above non-unitary setup
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connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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* virtual photons between quarks: lattice calculation
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two further e.m. corrections due to Wilson (twisted-mass) fermions

ef
2T

µ

f x( )
f , µ
∑ = ef

2 qf x( )
iγ 5τ 3 −γ µ

2
Uµ x( )qf x + µ( )+ qf x + µ( )

iγ 5τ 3 + γ µ

2
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† x( )qf x( )%
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(

)
*

f , µ
∑- tadpole vertex:

- shift of the critical mass: δmf
crq f x( )iγ 5τ 3qf x( )
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approximation the neutral pion and neutral kaon masses
vanish for !mcr

f given by

where f ¼ fu; d; sg. From the numerical point of view,
the parameters !mcr

f have to be determined as accurately

as possible because they are needed in order to cancel a
linear ultraviolet divergence present in Eq. (69).
The numerical problem with Eq. (74) is that the associ-
ated determination of !mcr

f requires a chiral extrapola-

tion and this in turn introduces larger uncertainties
compared to the alternative method discussed in
Sec. IVA, namely, the numerical determination of the
electromagnetic critical masses based on the use of the
WTI of Eq. (41).
By applying the methods of Sec. V to the Ward-

Takahashi identity Wfð ~gÞ ¼ 0, i.e. by applying the differ-
ential operator ! to the full theory parity-odd correlator
[left-hand side of Eq. (41)],

one obtains the following alternative definition of !mcr
f :

Note that the two definitions of Eqs. (74) and (76) have the
same ‘‘structure’’ in terms of corrected correlators. Indeed,
Dashen’s theorem is a consequence of the chiral WTI of
the continuum theory and, concerning valence flavor dou-
blets, Eq. (41) is the chirally twisted version of one of these
relations. From the numerical point of view, however, the
great advantage of Eq. (76) with respect to Eq. (74) is that
the first does not require chiral extrapolations.

In the left panel of Fig. 3 we show the combination of
correlators appearing in Eq. (76) as a function of time for
the simulation at ! ¼ 4:20 and ðamudÞ0 ¼ 0:0020; see the
Appendix. As expected, coming from a WTI, the numeri-
cal data exhibit a very long plateau from which we obtain a
reliable determination of !mcr

f . We have similar results for

the other values of quark masses and lattice spacings
simulated in this paper. In the right panel of the same figure

FIG. 3 (color online). Left: determination of !mcr
f according to Eq. (76) for the simulation corresponding to ! ¼ 4:20 and

ðamudÞ0 ¼ 0:0020 (see the Appendix). As expected the combination of correlators appearing in Eq. (76) gives a constant plateau
in time from which we extract !mcr

f . Right: numerical results for !mcr
f for the different simulations. Black (diamonds) points

correspond to ! ¼ 3:80, dark magenta (circles) points correspond to ! ¼ 3:90, green (squares) points correspond to ! ¼ 4:05, and
blue (triangles) points correspond to ! ¼ 4:20. As expected the critical mass counterterms depend very mildly on the simulated
symmetric light quark mass ðamudÞ0: the small dependence is due to statistical fluctuations and (small) cutoff effects.

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 87, 114505 (2013)

114505-16

δmf
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from vector WI
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strong  correlation 
between δmcr  and 
tadpole terms

the  sum  is  well  
determined
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where �G
K

= h0|s̄�
5

`(0)|�Ki. Note that the insertion of the QIB term L̂ constitutes

a flavour diagonal perturbation and that, consequently, the kaons are the lightest states

contributing both to C
KK

(~p, t) and to �C
KK

(~p, t). The analysis would be considerably

more complicated in the case of a perturbation (typically insertions of the weak hamil-

tonian) opening a decay channel for the kaons because the physical information would be

hidden into sub-leading exponential terms.

In our case, by studying the ratio of the two correlators of eqs. (4.3),
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it is possible to extract the leading QIB corrections to kaon energies and decay constants.

Indeed �E
K

appears directly in the previous equation as the “slope” with respect to t

whereas �F
K

can be extracted from the “intercept” according to

F
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= (m
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ud
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On a lattice of finite time extent T with quark fields satisfying anti-periodic boundary con-

ditions along the time direction and given our choice of the kaon source and sink operators,

the pseudoscalar densities, eq. (4.4) has to be modified according to
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As can be seen from figure 1, �C
KK

(~p, t) is determined with high precision, given the

strong statistical correlation existing between the numerator and the denominator of the

ratio in eq. (4.4). A consistency check of our procedure consists in verifying the dispersion

relation E2

K

(p) = p2 + M2

K

and in comparing the variation �E
K

(p) against its expected

behaviour �E
K

(p) = M
K

�M
K

/E
K

(p). Excellent agreement is found between numerical

data and the theoretical curves shown in figure 2 both for E2

K

(p), top-left panel, and

�E2

K

(p), top-right panel. In the bottom panels of figure 2 we also show that two di↵erent

definitions of �F
K

(blue and red points) extracted from correlators at several ~p-values give

consistent results. The second definition of F
K

and of �F
K

has been obtained by considering

the correlation function between the pseudoscalar density and the axial vector current
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and its correction at first order in �m
ud

.

– 10 –

besides e.m. corrections at leading order in αem , we adopt the RM123 approach to evaluate the slope of 
the leading IB corrections due to md ≠ mu, based on the insertion of the (isovector) scalar density in the 
isospin symmetric QCD limit 
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preliminary results for PS meson masses

universal FSE: −α emκ 2 +MπL( ) / L2
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h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

!
1 −

m2
l
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π

"
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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* Wilson twisted-mass fermions (rotation to the physical basis)

Zi
QCD =  non-perturbative QCD corrections O α s( )
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r ≡ rq1

rℓ         rq2
= −rq1( )Wilson r-parameters:

0 O5
bare PS = 0!" #$

to keep discretization errors 
on MPS of order O(a2m)

* r = ±1, but physical quantities cannot depend on r

chirality mixing
e.m. corrections to the four-fermion effective theory generate UV divergencies that can be regularized 
by multiplying the photon propagator by MW2/(MW2 - k2) (W-regularization)
on the lattice a perturbative matching has been calculated at LO in αem [PRD 91 (2015) 074506]

*

*
for lattice formulations breaking chiral symmetry
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* the non-perturbative determination of  Z1QCD and Z2QCD is in progress

-0.5

0.0

0.5

1.0

0.20 0.25 0.30 0.35 0.40 0.45 0.50

average over r=±1

r = -1, Z
3,4

 = 0

r = +1, Z
3,4

 = 0

r = -1, Z
3,4

QCD = Z
A

r = +1, Z
3,4

QCD = Z
A

[ δ
 A

π(q
l)  /

 A
π(0

) ]W
-r

eg

M
π+

   (GeV)



subtraction of IR divergence and of universal FSEs
δAPS
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0( ) →
δAPS L( )
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0( )

virtual photon emission from a point-like meson
using the lattice volume as IR regulator

from Tantalo’s talk:
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* structure-dependent FSEs start at order 1 L( )2 compare
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* up to 1 L2 subtraction: b3 = 0
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* chiral extrapolation [Knecht et al., EPJC 12 (2000) 469]
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* K/π ratio:
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CONCLUSIONS AND PERSPECTIVES
the methodology proposed in PRD91 (2015) 074506 to calculate QED corrections to hadronic 
processes, although very challenging, is within the reach of present lattice technologies

we have presented the first lattice results on the electromagnetic effects in the leptonic decay rates 
π+ → μ+ν[γ] and K+ → μ+ν[γ] 

*

*

Rπ
phys ΔEγ

max( ) = 1.0210 (15) ...( )qQED
Rπ

phys ΔEγ
max( )

Rπ
PDG ΔEγ

max( )
= 1.0033 (26) ...( )qQED

RKπ
phys ΔEγ

max( ) = 0.9863 (13) ...( )qQED
RKπ

phys ΔEγ
max( )

RKπ
PDG ΔEγ

max( )
= 0.9931(21) ...( )qQED

improvements may be expected from a better theoretical understanding of structure-dependent FSEs;
the inclusion of disconnected diagrams is mandatory for removing the quenched QED approximation;
extensions to leptonic heavy-light meson decays and semileptonic Kℓ3 decays are being targeted.

*

*

the point-like approximation for real photon emission is reliable 
at small values of ΔEγ ~ 10 - 20 MeV

~ OK for the pion case (ΔEγmax ~ 30 MeV)
   NOT for the kaon case (ΔEγmax ~ 235 MeV)

exp. cuts in the photon energy should be (re)considered

preli
minary

*
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stochastic evaluation of the photon propagator

“exchange” diagram
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♣
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OLD procedure
NEW procedure

OLD procedure

NEW procedure

=η x( )
=ϕ x( ) = Δγ x − y( )η y( )

 
= ρ x( ) = dk∫ eikx Δγ k( ) !η k( )

t/a

Ce
xc

h (t
) /

 C
0(t

)

* computation of ρ(x) (via FFT) is expensive as the one of ϕ(x) 
* the new procedure requires 1 inversion less
* noise is reduced, in particular for the exchange diagram
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ensemble � V/a

4
aµ` M⇡ MK L M⇡L a �M⇡+/e

2
a �M⇡+/e

2

(MeV) (MeV) (fm) (P5A0) (P5P5)

A30.32 1.90 323 ⇥ 64 0.0030 275 577 2.84 3.96 0.01835(12) 0.01835(09)

A40.32 0.0040 315 588 4.53 0.01815(18) 0.01816(14)

A50.32 0.0050 350 595 5.04 0.01781(11) 0.01778(09)

A40.24 243 ⇥ 48 0.0040 324 594 2.13 3.50 0.01556(48) 0.01606(14)

A60.24 0.0060 388 610 4.19 0.01628(28) 0.01617(15)

A80.24 0.0080 438 624 4.73 0.01676(24) 0.01665(12)

A100.24 0.0100 497 650 5.37 0.01732(11) 0.01730(05)

A40.20 203 ⇥ 48 0.0040 329 587 1.77 2.95 0.01474(42) 0.01504(29)

B25.32 1.95 323 ⇥ 64 0.0025 259 553 2.61 3.43 0.01538(19) 0.01523(18)

B35.32 0.0035 300 562 3.97 0.01521(17) 0.01515(08)

B55.32 0.0055 377 587 4.99 0.01532(14) 0.01522(08)

B75.32 0.0075 437 608 5.78 0.01546(14) 0.01544(09)

B85.24 243 ⇥ 48 0.0085 463 617 1.96 4.60 0.01448(18) 0.01452(13)

D15.48 2.10 483 ⇥ 96 0.0015 224 538 2.97 3.37 0.01225(21) 0.01192(13)

D20.48 0.0020 255 541 3.84 0.01162(10) 0.01129(08)

D30.48 0.0030 310 554 4.67 0.01114(06) 0.01115(05)

Table 2: Values of the simulated pion and kaon masses, of the lattice size L, of
the product M

⇡

L and of the e.m. correction to the charged pion mass extracted
from the correlators (15) and (18), respectively, for the gauge ensembles used in
our project. The values of M

K

correspond to a renormalized strange quark mass
equal to the physical value m

s

= 99.6(4.3) MeV determined in Ref. [2].

3.1 Subtraction of the infrared divergence

As already pointed out in Section 1, the quantity �Aint

PS

/A
(0)
PS

entering the master
equation (8) represents the contributions of the diagrams (5a-5c) with the subtrac-
tion of the corresponding emissions of virtual photons evaluated for a point-like
meson using the finite lattice volume for the infrared regularization. Taking into
account also Eq. (12) one has

�Aint

PS

A
(0)
PS

⌘ �A
(5a�5c)
PS

A
(0)
PS

� �Aint

pt

(L)

A
(0)
PS

� �M
PS

M
(0)
PS

. (20)

The quantity �Aint

pt

(L)/A(0)
PS

can be written in the form

�Aint
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(L)

A
(0)
PS

= b
(int)
IR

log(M
PS

L) + b
(int)
0 + b

(int)
1

1

M
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L

+ b
(int)
2

1

M2
PS

L2
+O(e�M⇡L) . (21)

According to the note sent by Nazario, the coe�cients b(int)
IR

, b(int)0 , b(int)1 and b
(int)
2

8
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ChPT fit: Hayakawa&Uno [PTP ’08]
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 87, 114505 (2013)
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solid lines: A + B MπL( )2  fit

leptonic decay rate: subtraction of universal FSEs
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π + → µ+ν γ[ ]
K + → µ+ν γ[ ]
π + → µ+ν γ[ ]

pion and kaon/pion analyses

Rπ
phys ΔEγ

max( ) = 1.0210 (8)stat+ fit (11)chiral (6)FSE (2)a2 ...( )qQED
= 1.0210 (8)stat+ fit (13)syst ...( )qQED = 1.0210 (15) ...( )qQED

RKπ
phys ΔEγ

max( ) = 0.9863 (11)stat+ fit (6)chiral (1)FSE (1)a2 ...( )qQED
= 0.9863 (11)stat+ fit (6)syst ...( )qQED = 0.9863 (13) ...( )qQED

data set chiral log a2-term χ2/d.o.f. Rphys
π

b2 = b3 = 0 yes yes 0.72 1.0195 (8)

no yes 0.75 1.0217 (8)

yes no 0.74 1.0192 (7)

no no 0.77 1.0213 (7)

b3 = 0 yes yes 1.00 1.0207 (8)

no yes 0.99 1.0229 (8)

yes no 0.95 1.0204 (7)

no no 0.94 1.0227 (7)

Table 2:

data set chiral log a2-term χ2/d.o.f. Rphys
Kπ

b2 = b3 = 0 yes yes 1.07 0.9868 (5)

no yes 1.04 0.9856 (8)

yes no 0.96 0.9870 (5)

no no 0.93 0.9858 (10)

b3 = 0 yes yes 1.18 0.9867 (11)

no yes 1.14 0.9855 (13)

yes no 1.14 0.9871 (17)

no no 1.04 0.9857 (11)

Table 3:
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...  It  includes the universal short-distance electroweak correction obtained by Sirlin [18],  the universal long-
distance correction for a point-like meson from Kinoshita [19],  and corrections that depend on the hadronic 
structure [20]. We evaluate [it] using the latest experimentally-measured meson and lepton masses and coupling 
constants from the Particle Data Group [3], and taking the low-energy constants (LECs) that parameterize the 
hadronic contributions from Refs. [17], [21], [22]. The finite non-logarithmic parts of the LECs were estimated 
within the large-NC approximation assuming that contributions from the lowest-lying resonances dominate ...

... The uncertainty is dominated by that from theoretical estimate of the hadronic structure-dependent radiative 
corrections, which include next-to-leading order contributions of O(e2p2π,K) in chiral perturbation theory [17] ...
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Rπ ΔEγ
max( ) = 1.0176 (21)

RKπ ΔEγ
max( ) = 0.9931(17)
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pion decay rate: dependence on the photon energy


