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Motivation
๏ Minimal Walking Technicolor model

๏ SU(3) with two flavors of two-index symmetric fermions
๏ Near the conformal window

๏ Possible walking behavior
๏ Might have a light scalar

๏ This would be the Higgs particle
๏ Small S parameter
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FIG. 1: Phase diagram for theories with fermions in the (from
top to bottom in the plot; colour online): i) fundamental
representation (grey), ii) two-index antisymmetric (blue), iii)
two-index symmetric (red), iv) adjoint representation (green)
as a function of the number of flavours and the number of
colours. The shaded areas depict the corresponding conformal
windows. The upper solid curve represents N

I
f [R(N)] (loss of

asymptotic freedom), the lower N
II
f [R(N)] (loss of chiral sym-

metry breaking). The dashed curves show N
III
f [R(N)] (exis-

tence of a Banks–Zaks fixed point). Note how consistently
the various representations merge into each other when, for a
specific value of N , they are actually the same representation.

groups in a larger extended technicolour gauge group.
The gauge bosons of the extended technicolour model
couple the fermions of the standard model to the techni-
quarks and their condensate, which renders the standard
model fermions massive.

Like all other mechanisms for electroweak symmetry
breaking, technicolour has to face constraints derived
from experimental data. In the case of technicolour
the two main aspects are additional contributions to
the vacuum polarisation of the electroweak gauge bosons
(oblique parameters) and flavour changing neutral cur-
rents as well as lepton number violation due to the ex-
tended technicolour dynamics. These issues have been
discussed in great detail in the literature (see, for example
[20, 21]). Experimental data (see, for example [22, 23])
tells us that the above mentioned contributions must be
small. Here, let us only recall that flavour changing neu-
tral currents and lepton number violation are suppressed
in walking technicolour theories, that is technicolour the-
ories with nearly conformal dynamics. Through non-
perturbative effects, quasi-conformality also helps reduc-
ing the techniquarks’ contribution to the oblique param-
eters [11, 12, 13, 14, 24]. (In the absence of quasi-

conformal dynamics the S parameter can be larger than
its perturbative value.) On top of that, potential ad-
ditional Goldstone bosons, beyond the three which are
absorbed as the longitudinal degrees of freedom of the
electroweak gauge bosons, become very heavy, thereby
alleviating bounds set by them not having been detected
to date. Therefore, candidates for realistic technicolour
theories should feature quasi-conformal dynamics and
should contribute little to the oblique parameters already
at the perturbative level. In what follows, we will quan-
tify these criteria.

Already taking into account the experimental limits
on the S-parameter [26] severely constrains the set of
candidates. Perturbatively, it is given by

S =
1

6π

Nf

2
d(R). (17)

The values for S are given in Table I. Drawing the line at
S < π−1—somewhat arbitrarily but in accordance with
the experimental limits [22, 23]—leaves us with three
candidates which, characterised by their Dynkin indices
are: (1) with six flavours, (2) with two flavours, and (20)
with two flavours. Doubling the value of the cut on the S
parameter (S < 2π−1) would admit two more: (11) with
two flavours and (200) with two flavours.

The estimate for the lower bound (critical number of
flavours) of the conformal window is based on the point
where the critical coupling and the fixed point value co-
incide. This critical number of flavours is, in general, not
an even integer. A quasi-conformal physical realisation
of a technicolour theory is, however, constructed from
complete families of techniquarks.5

From the difference of the two scales, the amount of
walking, that is the ratio of the scale can be estimated
[8, 11],

λ∗ ≈ exp(π/
√

α∗/αc − 1). (18)

λ∗ is the ratio of the scale from which onwards the cou-
pling constant stays approximately constant divided by
the scale for which it starts running again. For this walk-
ing mechanism to be effective it must typically cover sev-
eral decades. Setting the cut at λ∗ > 103 leaves (2) with
two flavours (see Table I). [If the weaker bound on the S
parameter is chosen also (11) with two flavours survives.]
Weakening the requirement on the range of the walking
to λ∗ > 102 leads to no supplementary candidates.

1. Two flavours, SU(2), adjoint representation: (2)

The technicolour theory with two techniquarks in the
two-index symmetric/adjoint representation of SU(2),

5 Generalisations with an odd number of Dirac or even Weyl
flavours are conceivable. A corresponding example is given in
Sect. IIIC.

Dietrich, Sannino 2006



Old phase diagram
๏ Bulk phase identified from peak in plaquette susceptibility
๏ Chiral line identified from PCAC relation

Wilson fermions
+

Plaquette gauge



New simulations
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๏ Large number of new simulations (around 150)



New phase diagram
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1st order transition



Hysteresis
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Hysteresis
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Spectrum
๏ Spectrum across transition at β = 4.8
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Spectrum
๏ Spectrum across transition at β = 5.5
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Spectrum
๏ Spectrum across transition at β = 6.0
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Region I → II
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Weak coupling
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Ratio
๏ Ratio between MV and MPS for β = {3.0, 4.0, 4.6, 4.8, 5.0}
๏ This is in the strong coupling phase (Region I)



Ratio
๏ Ratio between MV and MPS for β = {5.1, 5.2, 5.3}
๏ This is in the weak coupling region (Region II)



Gradient flow
๏ Use gradient flow to measure change in lattice spacing

Lüscher 2010
BMW Collaboration 2012



Gradient flow
๏ Chiral limit with t0 observable.
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Gradient flow
๏ Chiral limit with w0 observable.
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Large Volume Runs



Spectrum
๏ Meson and baryon spectrum for β = 5.4
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Spectrum
๏ Meson and baryon spectrum for β = 5.5
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Ratio
๏ Ratio between MV and MPS for β = {5.4, 5.5}
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Chiral behavior
๏ Conformal fits 
 

๏ Chiral fits 
 
 

๏ Leading order pion mass and log term

Fixed in continuum



Conformal fits
๏ Combined fit to 6 channels for β = 5.4
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Chiral fits
๏ Combined fit to fPS and mPS for β = 5.4 χ2/dof = {7.85, 1.01} 
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Conclusions
๏ The phase structure is non-trivial
๏ Different behavior in different regions of the parameter space
๏ The model looks conformal in the weak coupling phase

๏ Things to consider includes:
๏ Open boundary conditions
๏ Finite volume effects



Thank you!


