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The FourPlusEight simulations (computational details)
I 1 staggered field (= 4 flavors) with light mass m` plus 2 staggered

fields (= 8 flavors) with heavy mass mh. Simulations done with
am` = 0.003, 0.005, 0.010, 0.015, 0.025, 0.035,
amh = 0.050, 0.060, 0.080, 0.100.

I fundamental-adjoint gauge action with β = 4, βa = −β/4 [Cheng et
al. 2013][Cheng et al. 2014], nHYP smeared staggered fermions
[Hasenfratz et al. 2007].

I lattice sizes mostly 243 × 48 and 323 × 64, but also
163 × 32 (exploratory), 363 × 64 and 483 × 96.

I lattice generations with hybrid MC with one Hasenbusch
intermediate mass; most simulations/measurements performed with
FUEL [J. Osborn]; most calculations done with USQCD SciDAC
software on USQCD computers at Fermilab and NSF-MRI
computers at MGHPCC.

I disconnected diagrams (for 0++) computed with stochastic sources
(6 sources, full color and time dilution, even-odd space dilution.)

I references: [JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP
proceedings 2014] [PRD 93 (2016) 075028]
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Color coded diagram of the simulations
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The pseudoscalar decay constant in lattice units
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This highlights the importance of setting an appropriate scale.
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Scale setting from the gradient flow

I Gradient flow defines the renormalized coupling:
[Narayanan and Neuberger 2006] [Lüscher 2010]

g2
GF (µ = 1/

√
8t) = t2〈E (t)〉/N (t: flow time; E (t): action density.)

I g2
GF is used for scale setting: g2

GF (t = t0) = 0.3/N (“t0=scale”).

I we denote by a? the lattice spacing for the simulation on the
363 × 64 lattice with am` = 0.003, amh = 0.080; the mass symbols
in our graphs denote physical, dimensionful masses, hence they are
multiplied by a? to show results in common lattice units.
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The pseudoscalar decay constant
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After rescaling by the scale set through the Wilson flow the values of the
pseudoscalar decay constants obtained with different light and heavy
masses all line up nicely on a single curve.
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Spectrum of light fermion composite states
from [PRD 93 (2016) 075028]
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Observations:
0++ is light (M0++ < Mρ), it tracks the pion.
Mπ/Fπ bends down indicating that the system is chirally broken.
For growing mh and m` → 0 the system approaches QCD, for decreasing
mh and m` ∼ mh we approach degenerate 12 flavors.
The ratios appear largely independent of mh!
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Hyperscaling in the light mass spectrum

from [PRD 93 (2016) 075028]
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I Mn/Fπ ≈ 11

I M%/Fπ ≈ 8

I M0++/Fπ ≈ 4− 5

(taking the chiral limit

is difficult but 0++ well

separated from the %)
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The system is chirally broken
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I In 4 flavors (QCD-like) we know the ratio diverges

I In 12 flavors an almost constant ratio is observed [Cheng at al. 2014]

— as expected for conformal systems
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Expressing observables as functions of m`/mh
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As shown by Anna Hasenfratz in the previous talk observables depend
only on the ratios m`/mh and not on m` or mh individually. m`/mh

tracks indeed a?m` and will be used to label the horizontal axis in the
following graphs.
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Hyperscaling in the light mass spectrum
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expressing observables as functions of m`/mh.
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Hyperscaling in the spectrum of heavy fermion composites
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The increase of the ratios Mhh
H /Fπ for a?m` → 0 is

due to the decrease of Fπ, which tends to a small
but non-zero value in the same limit. To the extent
that Fπ(m` = 0) set the EW scale the high values
of the ratios have physics significance.
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The heavy fermion spectrum vs. the heavy nucleon mass
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Effect of scale setting for the masss of the heavy N and ρ
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The left frame shows the the heavy N and ρ masses in the original lattice
units, the right frame shows the same masses after the mass scale has
been set through the Wilson flow.
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Conclusions

I Our results provide strong evidence for hyperscaling in the heavy
fermion masses.

I There is some analogy between mh in our model and the bare
coupling constant g in QCD: near the fixed point the physicsl values
of masses and other observables do not depend on them, changing
their value only varies the domain of scaling (in QCD lowering g
increases the high energy cut-off, here lowering mh increases the
domain of walking)

I The values of the observables will, however, depend on the model,
and if the theory of EW symmetry breaking is to be found, indeed,
in a strong dynamics framework, experiment and theory will decide
which is the correct model.

15 / 15


