

Lattice QCD on Non-Orientable Manifolds Part I [1512.06804]

July 24, 2016 | Simon Mages | Bálint C. Tóth Szabolcs Borsányi Zoltán Fodor Sándor D. Katz Kálmán K. Szabó

Outline

Introduction

P-Boundaries

Quenched Data

Outlook

Outline

Introduction

P-Boundaries

Quenched Data

Outlook

Topological Freezing

Topological charge is the integral

$$Q = \int_{\mathcal{M}} \mathrm{d}^4 x q(x)$$

over the topological charge density

$$q(x) = \frac{1}{4\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{tr} \left(F_{\mu\nu}(x) F_{\rho\sigma}(x) \right)$$

- discretized in finite volume on $\mathcal{M} = \mathbb{T}^4$
- topological invariant
- MC algorithms with small "step" size in field space: problem for ergodicity, diverging \(\tau_{int}\) of slow modes

Ideas

Why introduce non-orientable manifolds?

- Topological freezing
 - \rightarrow topological structure of field space
 - ightarrow topological charge Q
 - $\rightarrow \text{pseudoscalar}$
 - \rightarrow orientation

Several Ansätze in literature, e.g.

- subvolumes [Brower:2014bqa]
- metadynamics [Laio:2015era]
- multiscale equilibration [Endres:2015yca]
- open boundary conditions [Luscher:2011kk]

[Mo 14:15 Bietenholz] [Tu 10:45 Endres] [Tu 15:40 Toussaint] [Tu 19:10 Sanfillipo] [Fr 14:20 Garcia Vera]

Open Boundaries

 Topological structure of the field space depends on gauge group and space-time

Open Boundaries

- change topology of space-time and field space
 → charge is not discretized
- break translational invariance strongly at the boundaries
 - \rightarrow local structure of space-time, local QFT is changed
 - \rightarrow effect propagates into the bulk

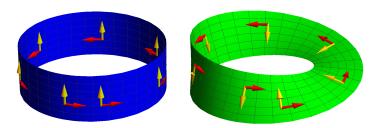
Alternative:

 different change in the topology of space-time without any local changes of space-time

Orientability

orientable:

non-orientable:

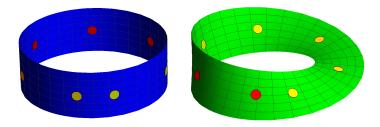


The One Ring

The Möbius Strip

Topological Charge and Orientability

q(x) is a pseudoscalar density



orientable roundtrip: no effect on charge

non-orientable roundtrip: changes sign of charge

Outline

Introduction

P-Boundaries

Quenched Data

Outlook

P-Boundaries

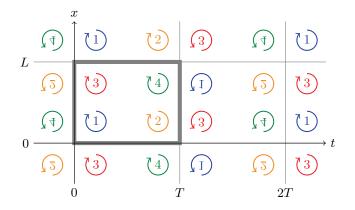
- Replace the periodic boundary conditions in one direction by P-periodic boundaries
- i.e. implement an additional parity transformation P on all fields in the boundary condition

Result:

- Topology of space-time changes
 - \rightarrow topology of field space changes
- Charge is P-odd, continuous translation in P-direction

 charge cannot be discretized
- No hard local breaking of translation invariance

Construction on the Universal Cover



Integration on Non-Orientable Manifolds

- No global volume form to define integration
- But volume element
 - \rightarrow integrate scalar densities
 - \rightarrow cannot integrate pseudoscalar density q(x)

Workaround using local volume form:

Define a total charge Q_m on a maximal oriented submanifold

$$Q_m = \int_0^T \mathrm{d}t \int \mathrm{d}^3 \mathbf{x} q(x)$$

(same expression for open boundaries)

Drop index "m":

$$Q := Q_m$$

July 24, 2016

Outline

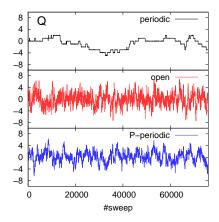
Introduction

P-Boundaries

Quenched Data

Outlook

History of the topological charge Q



 $\beta = 5.1$, lattice spacing a = 0.040 fm, and box size 1.6 fm.

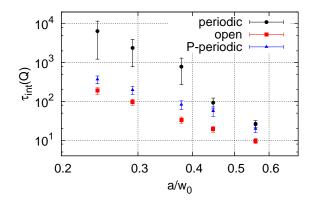
July 24, 2016

Member of the Helmholtz-Association

Claims

1 scaling of $\tau_{int}(Q)$ with lattice spacing is improved

Integrated autocorrelation time



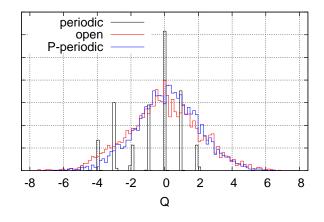
box size 1.6 fm.

July 24, 2016

Claims

- scaling of τ_{int}(Q) with lattice spacing is improved better than periodic boundaries similar to open boundaries
- 2 Q is not quantized

Histogram of the topological charge



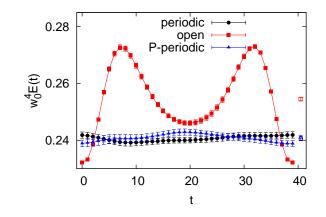
 $\beta = 5.1$, lattice spacing a = 0.040 fm, and box size 1.6 fm.

Member of the Helmholtz-Association

Claims

- scaling of τ_{int}(Q) with lattice spacing is improved better than periodic boundaries similar to open boundaries
- Q is not quantized different from periodic boundaries similar to open boundaries
- B breaking of translational symmetry is suppressed

Time slice averaged action density

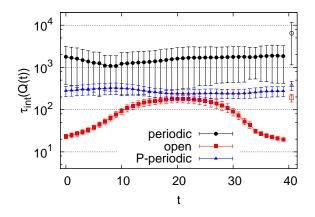


 $\beta = 5.1$, lattice spacing a = 0.040 fm, and box size 1.6 fm.

Claims

- scaling of τ_{int}(Q) with lattice spacing is improved better than periodic boundaries similar to open boundaries
- Q is not quantized different from periodic boundaries similar to open boundaries
- breaking of translational symmetry is suppressed similar to periodic boundaries
 better than open boundaries

Time slice autocorrelation time



 $\beta = 5.1$, lattice spacing a = 0.040 fm, and box size 1.6 fm.

Instanton picture

Observables are well-behaved

- \rightarrow classical field space is connected? NO!
- Instantons reflect sectors: Q = N₊ N₋
- Instanton dynamics connects sectors: pair-creation, propagation + lattice artefacts

Torus:
$$Q = N_+ - N_-$$
 conserved
 $\rightarrow \infty$ sectors

- Open: $N_+ \pm N_-$ not well defined \rightarrow 1 sector
- $\begin{array}{l} \mathsf{P:} \ \mathsf{N}_+ + \mathsf{N}_- \text{ conserved mod 2} \\ \rightarrow \mathsf{2} \text{ sectors!} \end{array}$

Outline

Introduction

P-Boundaries

Quenched Data

Outlook

Outlook

Open issues:

- two remaining sectors of classical field space
 ⇒ more details in Balints talk
- include fermions: spinors on non-orientable manifolds
 ⇒ construction in Balints talk

Non-orientable manifolds are useful and interesting:

- improve topological autocorrelations
 - \Rightarrow similar to open boundaries
- suppressed breaking of translational symmetry
 better than open boundaries
- new toy in lattice QCD toolbox ⇒ new opportunities

Diffusion Model

Describe autocorrelations in simulation time [McGlynn, Mawhinney, PRD **90** (2014) 7]

$$C(t, t_0, \tau) \equiv \langle Q(t + t_0, \tau_0 + \tau) Q(t_0, \tau_0) \rangle$$

$$\frac{\partial}{\partial \tau} C(t, t_0, \tau) = D \frac{\partial^2}{\partial t^2} C(t, t_0, \tau) - \frac{1}{\tau_{\mathsf{tunn}}} C(t, t_0, \tau),$$

- topological charge Q(t, τ) on a time slice t at simulation time τ
- diffusion constant *D*
- timescale for topological charge tunneling \(\tau_{tunn}\)

Diffusion Model

- Solutions determine integrated autocorrelation time
- Solutions determined by symmetry of boundaries

Boundary	periodicity	$ au_{int}$
Torus	$C(t+T,t_0,\tau)=C(t,t_0,\tau)$	$\propto au_{ m tunn}$
Р	$C(t+T,t_0,\tau)=-C(t,t_0,\tau)$	$\propto D^{-1}$
Open $t_0 = \frac{T}{2}$	" $C(t+T, \frac{T}{2}, \tau) = -C(t, \frac{T}{2}, \tau)$ "	$\propto D^{-1}$

- Same τ_{int} for P and (middle of) open
- Only torus is dependent on \(\tau_{tunn}\) for small \(\tau_{tunn}\)

P-Boundaries: Actual Implementation (Pure Gauge)

- Easier to implement in parallel than *P* transformation: Reflection *R_x* of single coordinate *x*
- $R_x \equiv P \times \text{rotation by } \pi$

$$U_{x}(x, y, z, t+T) = U_{x}^{\dagger}(L-x-1, y, z, t),$$

$$U_{i}(x, y, z, t+T) = U_{i}(L-x, y, z, t)$$

for i = y, z, t. In the other three directions we keep the usual periodic boundary condition.

Quenched Parameters

- Symanzik gauge action
- sweeps of one heatbath plus four overrelaxation
- fixed physical size of $L = T \sim 2.27/T_c$

L	β	w ₀	<i>a</i> [fm]	n _{sweep}
16	4.42466	1.79	0.093	2 × 4001
20	4.57857	2.24	0.075	3 imes 4001
24	4.70965	2.65	0.063	4 imes 4001
32	4.92555	3.43	0.049	10 imes 4001
40	5.1	4.13	0.040	19 imes 4001

Remarks on Observables

Topological Susceptibility on P-boundaries:

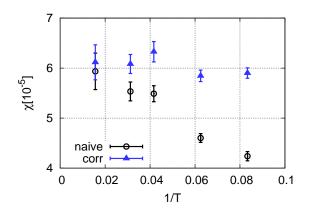
$$\chi = \int_{\mathcal{M}} \mathsf{d}^4 x \langle q(0) q(x)
angle
eq rac{1}{V_4} \langle Q^2
angle$$

due to missing translational symmetry of q(x) (similar to subvolume method)

Alternative:

• evaluate $\chi = \int_0^T dt \int d^3x \langle q(\mathbf{0}, T/2)q(\mathbf{x}, t) \rangle$ directly \Rightarrow reduced finite volume errors

Observables: FV dependence



 β = 4.42466, lattice spacing *a* = 0.093 fm, fixed spatial size *L*, only temporal size *T* changes

July 24, 2016

Member of the H