Form factors for moments of correlation functions

Chia Cheng Chang
Lawrence Berkeley National Lab
in collaboration with
Chris Bouchard (W\&M)
Kostas Orginos (W\&M/JLab)
David Richards (JLab)
Lattice 2016
University of Southampton

Motivation

 constrain shapes of form factors in nuclear and particle physicscalculate slopes of form factors w.r.t. momenta

Outline

 introduce formulation apply to nucleon vector matrix element
Overview of moment methods

Issues with moment methods:
Wilcox - Moments on lattice yields wrong ground state.
[0204024v1]
Existing methods:
HVP - time moment current current correlator
Rome - expand lattice operators
ETMC - position space method
[1208.5914v2][1407.4059]
[1605.07327v1]
Existing methods take $\partial / \partial q_{j}$ derivatives at $q^{2}=0$
Our method takes $\partial / \partial q^{2}$ generalized to all momenta

ensemble overview

$2+1$ flavor JLab isotropic Clover $a \approx 0.12 \mathrm{fm}$
$m_{\pi} \approx 400 \mathrm{MeV}$
$N_{x}^{3} \times N_{t}=24^{3} \times 64$

correlator overview

double z-direction: $\quad N_{s}^{2} \times N_{z} \times N_{t}=24^{2} \times 48 \times 64$ 480 configurations $\times 16$ sources
$m_{\text {valence }}=m_{\text {light } \text { sea }}$

kinematic setup

correlators

two-point correlator

$$
C_{2 \mathrm{pt}}\left(X_{t}\right)=\int d^{3} \vec{X}\left\langle A_{X_{t}, \vec{X}} \mid A_{0, \overrightarrow{0}}\right\rangle e^{-i k X_{z}}
$$

two-point moment

$$
\begin{aligned}
\frac{\partial}{\partial k^{2}} C_{2 \mathrm{pt}}\left(X_{t}\right) & =\int d^{3} \vec{X}\left\langle A_{X_{t}, \vec{X}} \mid A_{0, \overrightarrow{0}}\right\rangle\left(\frac{-i X_{z}}{2 k}\right) e^{-i k X_{z}} \\
\lim _{k^{2} \rightarrow 0} C_{2 \mathrm{pt}}^{\prime}\left(X_{t}\right) & =\int d^{3} \vec{X}\left\langle A_{X_{t}, \vec{X}} \mid A_{0, \overrightarrow{0}}\right\rangle\left(\frac{-X_{z}^{2}}{2}\right)
\end{aligned}
$$

only have even spatial moments

two-point z-correlator

$\ln \left[C_{2 \mathrm{pt}}\left(X_{t}, X_{z}\right)\right]$
$M_{\text {eff }}$

correlators cont.

three-point correlator
$C_{3 \mathrm{pt}}\left(X_{t}, Y_{t}\right)=\int d^{3} \vec{X} d^{3} \vec{Y}\left\langle A_{X_{t}, \vec{X}}\right| \Gamma_{Y_{t}, \vec{Y}}\left|B_{0, \overrightarrow{0}}\right\rangle e^{-i k Y_{z}}$
three-point moment

$$
\begin{aligned}
\frac{\partial}{\partial k^{2}} C_{3 \mathrm{pt}} & =\int d^{3} \vec{X} d^{3} \vec{Y}\left\langle A_{X_{t}, \vec{X}}\right| \Gamma_{Y_{t}, \vec{Y}}\left|B_{0, \overrightarrow{0}}\right\rangle\left(\frac{-i Y_{z}}{2 k}\right) e^{-i k Y_{z}} \\
\lim _{k^{2} \rightarrow 0} C_{3 \mathrm{pt}}^{\prime} & =\int d^{3} \vec{X} d^{3} \vec{Y}\left\langle A_{X_{t}, \vec{X}}\right| \Gamma_{Y_{t}, \vec{Y}}\left|B_{0, \overrightarrow{0}}\right\rangle\left(\frac{-Y_{z}^{2}}{2}\right)
\end{aligned}
$$

moments are with respect to current insertion
given correlators, moments are computationally free

three-point z-correlator

lowest lying state when current is outside nucleon operators

finite volume correction

Spatial moments push the peak of the correlator away from origin

Larger finite volume corrections compared to regular correlators

Have exponential finite volume corrections

Currently thinking about ways to implement FV corrections

fit functions

two-point fit function

$$
C_{2 \mathrm{pt}}=\sum_{n} \frac{Z_{n}^{A \dagger} Z_{n}^{A}}{2 E_{n}^{A}} e^{-E_{n}^{A} X_{t}}
$$

two-point moment fit function

$$
C_{2 \mathrm{pt}}^{\prime}=\sum_{n} C_{n}^{2 \mathrm{pt}}\left(\frac{2 Z_{n}^{A \prime}}{Z_{n}^{A}}-\frac{1}{2\left(E_{n}^{A}\right)^{2}}-\frac{X_{t}}{2 E_{n}^{A}}\right)
$$

definitions
$Z_{n}^{A}=\langle n \mid A\rangle$

$$
E_{n}^{A}=\sqrt{M_{A}^{2}+k^{2}} \quad \quad \quad=\frac{\partial}{\partial k^{2}}
$$

expect $Z_{n}^{A \prime}=0$ for point source/sink two-point constrains all parameters except $Z_{n}^{A \prime}$

fit functions cont.

three-point fit function
$C_{3 \mathrm{pt}}=\sum_{n, m} \frac{Z_{n}^{A \dagger}(0) \Gamma_{n m}\left(k^{2}\right) Z_{m}^{B}\left(k^{2}\right)}{4 M_{n}^{A}(0) E_{m}^{B}\left(k^{2}\right)} e^{-M_{n}^{A}(0)\left(X_{t}-Y_{t}\right)} e^{-E_{m}^{B}\left(k^{2}\right) Y_{t}}$
three-point moment fit function

$$
C_{3 \mathrm{pt}}^{\prime}=\sum_{n, m} C_{n m}^{3 \mathrm{pt}}\left(\frac{\Gamma_{n m}^{\prime}}{\Gamma_{n m}}+\frac{Z_{m}^{B \prime}}{Z_{m}^{B}}-\frac{1}{2\left(E_{m}^{B}\right)^{2}}-\frac{Y_{t}}{2 E_{m}^{B}}\right)
$$

2pt and 3pt constraints all params. except slopes 2pt moment needed for smeared source/sink 3pt moment constrains slope of form factor

preliminary overlap factors

fit strategy
 Bayesian multi-state

simultaneous fit to
$2 p t+2 p t$ moment @ all momenta
check stability

- \# of states
- vs 2pt only fit
- time range (not shown)

preliminary
 slopes of gV

summary and outlook

requires negligible additional computation time obtain slopes of matrix elements increase precision of central values
run more configs
run more Tsnks
try on larger ensemble implement FV corrections
implement with FH correlators correlators of higher moments

thank you

