Heavy Flavor Physics

Ran Zhou

Fermilab (Lattice 2016, Southampton, UK)

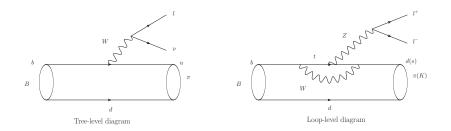
07/28/2016

<ロト </p>

3

1 / 26

07/28/2016


Ran Zhou (Fermilab)

Outline

I will focus on published results after Lattice 2015 and their impact on Standard-Model phenomenology.

- Heavy to light semileptonic decays ($B \rightarrow \pi I \nu, B_s \rightarrow K I \nu, B \rightarrow K I I$, etc..)
- *B*-*B* mixing
- Heavy flavor physics talks on Lattice 2016.

Heavy to light semileptonic decays

- *B*-meson semileptonic decays through tree-level diagram $(b \rightarrow u l \nu)$. For example, $B \rightarrow \pi l \nu$, $B_s \rightarrow K l \nu$, $\Lambda_b \rightarrow p l \nu$
- B-meson semileptonic decays through loop-level diagram
 (b → s(d)II) For example, B → K(π)I⁺I⁻, B → K(π)νν̄, Λ_b → ΛII

(日) (同) (三) (

Standard Model prediction

The Standard Model prediction can be written in a generic form:

Theo. pred. = (prefactors) × (CKMfactor) × $\langle f | \hat{O} | i \rangle$

- Prefactors contain the Wilson coefficients (short distance physics).
- CKM factor depends on the processes.
- Lattice QCD calculates $\langle f | \hat{O} | i \rangle$ non-perturbatively from first principle. (long distance physics)

- 4 同 ト 4 ヨ ト 4 ヨ

Hadronic matrix elements and form factors

Matrix elements in tree-level processes:

$$egin{aligned} \langle \mathcal{B}(p)|ar{b}\gamma^{\mu}s|\mathcal{P}(k)
angle &= f_{+}(p^{\mu}+k^{\mu}-rac{m_{B}^{2}-m_{K}^{2}}{q^{2}}q^{\mu})+f_{0}rac{m_{B}^{2}-m_{K}^{2}}{q^{2}}q^{\mu} \ &= \sqrt{2m_{B}}\left[f_{\parallel}rac{p^{\mu}}{m_{B}}+f_{\perp}k_{\perp}^{\mu}
ight] \end{aligned}$$

For the rare (loop-level) decays, there is an extra form factor via tensor current

$$q_{\nu}\langle P(k)|\bar{s}\sigma^{\mu\nu}b|B(p)\rangle = \frac{if_{T}}{m_{B}+m_{K}}\left[q^{2}(p^{\mu}+k^{\mu})-(m_{B}^{2}-m_{K}^{2})q^{\mu}\right]$$

There are more form factors in the Λ_b semileptonic decays.

< □ > < 同 > < 回 > < 回 > < 回

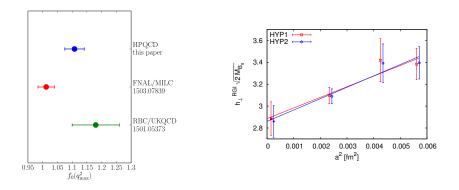
Heavy to light semileptonic decays (Tree level) Lattice-QCD $B \rightarrow \pi l \nu$ form factors summarized by Carlos Pena at Lattice 2015:

new results for $B \to \pi l \nu$

	FNAL/MILC	RBC/UKQCD	HPQCD
ensembles	MILC	RBC/UKQCD	MILC
N_{f}	2+1	2+1	2+1
$a~({\rm fm})$	4/0.045 - 0.12	2/0.086, 0.11	2/0.09, 0.12
$M_\pi^{\rm min}~[{\rm MeV}]$	220	289	260
$M_\pi^{\min}L$	3.8	4.0	3.8
/ quarks	asqtad	DW	asqtad
<i>b</i> quark	RHQ (Fermilab)	RHQ (Columbia)	NRQCD
reference	[1503.07839]	[1501.05373]	[1310.3207]

Other works: PRD.92.034503($\Lambda_b \rightarrow p l \nu$) PRD.91.074510, PRD.90.054506 ($B_s \rightarrow K l \nu$)

Ran Zhou (Fermilab)


Heavy to light semileptonic decays (Tree level)

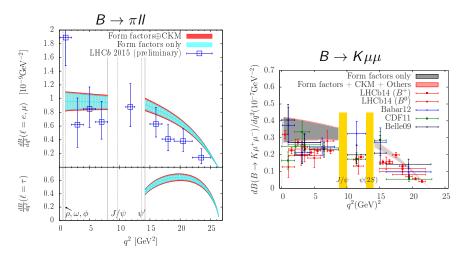
	HPQCD	ALPHA
process	$B ightarrow \pi$, $B_{s} ightarrow \eta_{s}$, $B_{s} ightarrow K$	$B_s o K$
kinematics	$q^2=q^2_{ m max}$	$q^2=21.22{\rm GeV}^2$
ensembles	MILC HISQ	CLS
N _f	2+1+1	2
а	3/0.15-0.09	0.048-0.075
M_π^{\min}	physical	310
light quark	HISQ	Improved Wilson
<i>b</i> quark	NRQCD	npHQET
Ref.	PRD.93.034502	PLB.2016.03.088

New published results after Lattice 2015:

(日)

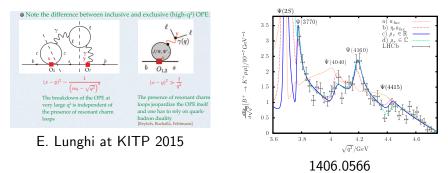
Heavy to light semileptonic decays (Tree level)

- (Left) First lattice-QCD result on $B \rightarrow \pi I \nu f_0(q_{\text{max}}^2)$ at zero recoil from physical u/d quark mass. (HPQCD PRD.93.034502).
- (Right) Continuum extrapolation of h_{\perp} . (ALPHA, PLB.2016.03.088)


→ □ → → □ → → □

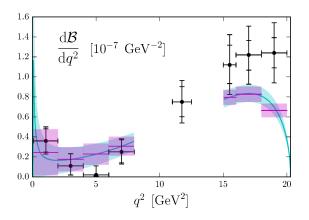
Heavy to light semileptonic rare decays (Loop level) New results after Lattice 2015:

	Fermilab/MILC	Fermilab/MILC	Detmold and Meinel
process	$B ightarrow {\it KII}$,	$B ightarrow \pi II$	$\Lambda_b ightarrow \Lambda$
kinematics	full q ²	full q ²	full q ²
ensembles	MILC asqtad	MILC asqtad	RBC/UKQCD DWF
N _f	2+1	2+1	2 + 1
а	4/0.045-0.12	4/0.045-0.12	2/0.09-0.12
M_π^{\min}	260	260	227
light quark	asqtad	asqtad	DWF
<i>b</i> quark	Fermilab	Fermilab	RHQ
Ref.	PRD.93.025026	PRL.115.152002	PRD.93.074501


- PRD.93.034005 (Fermilab/MILC, *B* rare decay pheno)
- PRD.94.013007 (Meinel and van Dyk, Λ_b rare decay pheno)
- PRD.88.054509, PRL.111.162002 (HPQCD, $B \rightarrow KII$ ff and pheno), PRD.89.094501, PRL.112.212003 ($B \rightarrow K^*II$ ff and pheno)

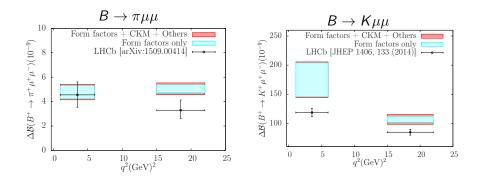
Standard Model predictions of B rare decays

• Standard-Model predictions of the differential decay rate in $B \rightarrow \pi II$ and $B \rightarrow KII$ process (PRL.115.152002, PRD.93.034005).


Resonance states and non-lattice errors

- As the form factor errors become smaller, cautious is needed to treat the non-lattice errors in the Standard-Model predictions.
- The resonance states could introduce the violation of quark-hadron duality in the high q² range (1406.0566, PRD.70.114005, EPJC.71.1625).
- For all non-lattice errors, please refer to E. Lunghi's talk at KITP Program "Lattice Gauge Theory for the LHC and Beyond"

Standard Model predictions of B rare decays


 $\Lambda_b \rightarrow \Lambda II$

• Standard-Model predictions of the differential decay rate in $\Lambda_b \rightarrow \Lambda II$ processes. (PRD.93.074501)

07/28/2016 12 / 26

Standard Model predictions of B rare decays

• Four measurements combined disfavor the Standard-Model hypothesis at the 1.7σ level (PRD.93.034005).

07/28/2016 13 / 26

Constraints on New Physics.

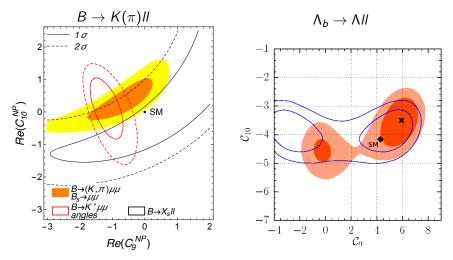


Figure : Constraints to new physics from $B \to K(\pi)II$ plus $B_s \to \mu\mu$ decays (PRD.93.034005) and $\Lambda_b \to \Lambda II$ decay (PRD.94.013007).

Related talks on Lattice 2016

Heavy to light meson semileptonic decay and $|V_{ub}|$, $|V_{cs}|$ determination.

- Semi-leptonic form factors for rare *B* decays (Edwin Lizarazo Fri. 17:10)
- $B \rightarrow \pi$ semileptonic decay form factors with NRQCD/HISQ quarks (Chris Bouchard Fri. 17:30)
- Form factors in the $B_s \rightarrow K I \nu$ decays using HQET and the lattice (Debasish Banerjee (Fri. 17:50)
- Extraction of the bare form factors for the semi-leptonic B_s decays (Mateusz Koren Fri. 18:10)
- Lattice QCD calculation of form factors for $\Lambda_b \rightarrow \Lambda(1520)I^+I^-$ decays (Stefan Meinel Fri. 15:50)
- *D* meson semileptonic decays in lattice QCD with Moebius domain-wall quarks (Takashi Kaneko Fri. 14:20)
- Hypercubic effects in semileptonic $D \rightarrow \pi$ decays on the lattice (Giorgio Salerno, Fri. 14:40)
- D meson semileptonic form factors with HISQ valence and sea quarks (Steven Gottlieb Fri. 15:20)


Related talks on Lattice 2016

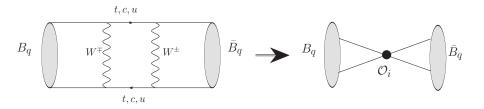
Heavy to heavy semileptonic decay and $|V_{cb}|$ determination.

- Heavy-heavy current improvement for calculation of $B \rightarrow D^{(*)} l\nu$ semi-leptonic form factors using the Oktay-Kronfeld action (Jon Bailey on Wed. 9:00 and Jaehoon Leem in Poster session)
- V_{cb} from $\bar{B}^0 \rightarrow D^{*-} l^- \nu$ zero-recoil form factor using 2+1+1 flavour HISQ and NRQCD (Judd Harrison on Wed. 9:20)
- *B_c* decays from highly improved staggered quarks and NRQCD (Andrew Lytle on Wed. 9:40)
- $B_{(s)} \rightarrow D_{(s)}$ semileptonic decays with NRQCD-HISQ valence quarks (Chris Monahan on Wed. 10:00)
- Semi-leptonic *B* decays with charming final state (Oliver Witzel on Wed. 10:20)

(日) (圖) (E) (E) (E)

B-mixing

Mixing occurs via box diagrams and is dominated by short distance contributions.


- ∃ →

07/28/2016

17 / 26

• The mixing process is GIM suppressed in Standard-Model.

B-mixing

$$\mathcal{H}_{eff} = \sum_{i=1}^{5} C_i \mathcal{O}_i$$

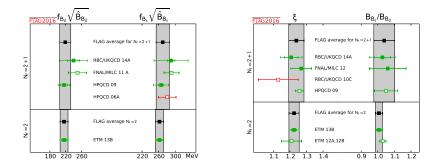
$$\mathcal{O}_1^q = \bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha} \bar{b}^{\beta} \gamma_{\mu} L q^{\beta}$$

$$\mathcal{O}_2^q = \bar{b}^{\alpha} L q^{\alpha} \bar{b}^{\beta} L q^{\beta}$$

$$\mathcal{O}_3^q = \bar{b}^{\alpha} L q^{\beta} \bar{b}^{\beta} L q^{\alpha}$$

$$\mathcal{O}_4^q = \bar{b}^{\alpha} L q^{\alpha} \bar{b}^{\beta} R q^{\beta}$$

$$\mathcal{O}_5^q = \bar{b}^{\alpha} L q^{\beta} \bar{b}^{\beta} R q^{\alpha}$$


Bag parameters:

$$\begin{split} \langle \bar{B}_{q}^{0} | \mathcal{O}_{i}(\mu) | B_{q}^{0} \rangle &= f_{B_{q}}^{2} B_{i}(\mu) \\ \xi &= \sqrt{\frac{f_{B_{s}}^{2} \hat{B}_{B_{s}}^{(1)}}{f_{B_{d}}^{2} \hat{B}_{B_{d}}^{(1)}}} \end{split}$$

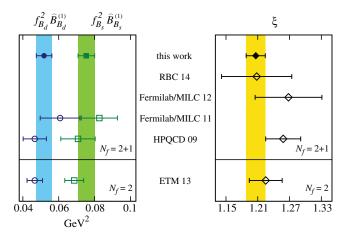
(ロ) (部) (目) (日) (日)

Ran Zhou (Fermilab)

B-mixing in Lattice QCD

• FLAG-3 (1607.00299) summarizes results until November 30, 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


B-mixing in Lattice QCD

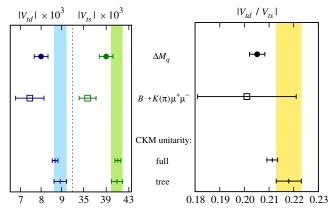
New published	results	after	Lattice	2015:
---------------	---------	-------	---------	-------

	Fermilab/MILC
process	<i>B</i> -mixing, <i>B_s</i> -mixing
ensembles	MILC asqtad
N _f	2+1
а	4/0.12-0.045
M_π^{\min}	260
light quark	asqtad
<i>b</i> quark	Fermilab
Ref.	PRD.93.113016

 Fermilab/MILC PRD.93.113016 satisfies FLAG criteria for "green square"

Impact on B-mixing average

 Error on matrix elements and ξ is 1.5-2 times and 2.4 times smaller than FLAG-3 averages, respectively.


B-mixing observables

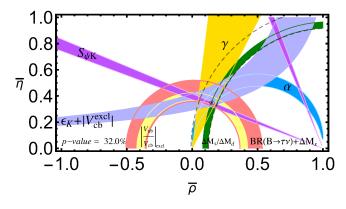
Mass difference and CKM matrix element determinations

$$\Delta M_d = \left(\frac{G_F^2 M_W^2 S_0}{4\pi^2}\right) \eta_B(\mu) \times |V_{tb} V_{td}^*|^2 \times \langle \bar{B}_d^0 | \mathcal{O}_1(\mu) | B_d^0 \rangle$$

$$\Delta M_s = \left(\frac{G_F^2 M_W^2 S_0}{4\pi^2}\right) \eta_B(\mu) \times |V_{tb} V_{ts}^*|^2 \times \langle \bar{B}_s^0 | \mathcal{O}_1(\mu) | B_s^0 \rangle$$

$$\frac{\Delta M_s}{\Delta M_d} = \left|\frac{V_{ts}}{V_{td}}\right|^2 \frac{\langle \bar{B}_s^0 | \mathcal{O}_1(\mu) | B_s^0 \rangle}{\langle \bar{B}_d^0 | \mathcal{O}_1(\mu) | B_d^0 \rangle} = \left|\frac{V_{ts}}{V_{td}}\right|^2 \frac{M_{B_s}}{M_{B_d}} \xi^2$$

Image: A math a math


Impact from new B-mixing results

- Determinations of $|V_{td}|$ and $|V_{ts}|$, and their ratio from *B*-mixing and rare $B \rightarrow K(\pi)\mu\mu$ decays (PRD.93.113016, PRD.93.034005).
- Tension between FCNC and tree processes: results from *B*-mixing (rare B decays) lie below the determinations from CKMfitters full global unitarity triangle fit using only tree-level inputs by 1.2–2.1σ.

Ran Zhou (Fermilab)

Impact from new B-mixing results

- Global CKM-unitarity-triangle fit using the new determination of ξ as well as new |V_{ub}| (PRD.92.014024) and |V_{cb}| (PRD.92.034506).
- The constraint from *B*-meson mixing (solid green band) is approximately 3 times smaller than that obtained using the previous result for ξ from PRD.86.034503 at 2012 (dashed gray lines).

Related talks on Lattice 2016

B-mixing and D-mixing:

- Calculation of hadronic matrix elements contributing to the B_s B
 _s width difference (Matthew Wingate on Wed. 10:40)
- *D*-Meson Mixing in 2+1 Lattice QCD and Related Topics (Andreas Kronfeld, Fri. 15:40)
- Other topics which are not covered in this talk:
 - Heavy to heavy semileptonic decays pheno (1605.07191).
 - Heavy meson decay constants (ETMC 1603.04306)
 - Charm Physics with Domain Wall fermions (Justus Tobias Tsang Fri. 14:00)
 - ▶ Decay constants f_B and f_{B_s} and quark masses m_b and m_c from HISQ simulations (Javad KOMIJANI Fri. 16:30)

イロト イポト イヨト イヨト

Summary

- There are many progresses in the heavy flavor physics from lattice calculations since Lattice 2015.
- Many new 2σ hints of NP have been revealed by the improvements of lattice calculations.
- Belle II and LHCb will improve measurements and observe new decays.
- We will continue to sharpen tests of SM and may reveal presence of NP.