

24-30 July 2016 Highfield Campus, University of Southampton

Hadronic contribution to the muon magnetic moment at the physical point

Budapest-Marseille-Wuppertal Collaboration

Taichi Kawanai (Forschungszentrum Jülich)

Introduction

t.

- Muon anomalous magnetic moment a^{μ}
 - one of the most precisely determined quantitie
 - sensitive to potential new physics contribution
 - 3σ discrepancy between theory and experimer.
- New g-2 experiments at FNAL and J-PARC are expected to reduce experimental error.
- Hadronic Vacuum Polarization (HVP) gives dominant theoretical error ~0.6%.

→ We calculate moments of HVP via LQCD simulation with $N_f = 2+1+1$ dynamical Staggered fermion at physical point with 6fm box.

Moment of Π_1 and Π_2

Hadronic contribution to the muon magnetic moment

$$a_{\mu}^{\rm HVP} = 4\pi\alpha \sum_{f} Q_{f}^{2} \int_{0}^{\infty} dq^{2} F(q^{2}) \hat{\Pi}^{f}(q^{2}) \qquad \text{Non-perturbative} \\ \text{aspects of QCD} \\ \text{Well known factor} \end{cases}$$

- Integrand highly peaked near $q^2 = m_{\mu}^2/4 \sim (50 \text{MeV})^2$.
- Scalar polarization function $\Pi(q^2)$ can be calculated via LQCD

$$\Pi_{\mu\nu}(q^2) = (q_{\mu}\nu - \delta_{\mu\nu}q^2)\Pi(q^2) = \sum e^{iqx}C_{\mu\nu}$$

$$C_{\mu\nu} = \langle j_{\mu}(x)j_{\nu}(0)\rangle$$
Electromagnetic quark current
$$j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

aspects of QCD

Derivative method [HPQCD 14]

$$\hat{\Pi}(q^2) = \sum_{n} q^{2n} \Pi_n, \quad \Pi_{n,\nu\mu} = (-1)^{n+1} \sum_{x} \frac{\hat{x}_{\nu}^{2(n+1)}}{\Gamma(2n+3)} C_{\mu\mu}(x)$$

- model-independent determination.
- Good description with Pade-approximant.
- a_{μ}^{HVP} and its error are dominated by $\Pi_{1.}$

Moment of Π_1 and Π_2

- This talk focus on the disconnected contribution. ▶
- In next talk, Kohtaroh will give details of all connected contributions. ▶
- We have three different averages $\Pi_{n,ss}$, $\Pi_{n,ts}$, $\Pi_{n,st}$ because of asymmetry $L \neq T$ (typically T = 1.5L).
 - invariant under spatial cubic rotation.

Disconnected contribution

• Current:
$$j_{\mu} = \sum_{f} Q_{f} \bar{q}_{f} \gamma_{\mu} q_{f} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{1}{3} \bar{s} \gamma_{\mu} s + \frac{2}{3} \bar{c} \gamma_{\mu} c$$

- Correlator: $\langle j_{\mu}(t)j_{\nu}(0)\rangle^{\text{disc.}} = \langle \sum_{\mathbf{x},f} Q_{f} \text{Tr } M_{f}^{-1}(\mathbf{x},\mathbf{x})\gamma_{\mu} \times \sum_{\mathbf{x}',f'} Q_{f'} \text{Tr } M_{f'}^{-1}(\mathbf{x}',\mathbf{x}')\gamma_{\nu} \rangle$

 - Z₂ random vectors $\boldsymbol{\xi}^{(r)}$: $\frac{1}{N} \sum_{r} \xi_{\mathbf{x},t,a}^{(r)} \xi_{\mathbf{x}',t',a'}^{(r)} * = \delta_{\mathbf{x},t,a}; \mathbf{x}',t',a'$ [Gülpers 14] $J_{\mu}^{f} = \sum_{\mathbf{x}} \operatorname{Tr} M_{f}^{-1}(\mathbf{x},\mathbf{x}) = \sum_{n}^{1000} \frac{1}{\lambda_{n}} + \operatorname{tr}(M^{-1}(1-\sum_{n} \psi_{n}\psi_{n}^{*}))$
 - Noise reduction technique. [Blum 12] [Bali 14] ▶

$$J_{\mu}^{f} = \frac{1}{N_{s}} \sum_{r=1}^{N_{s}} J_{\mu}^{f, \text{sloppy}} + \frac{1}{N - N_{s}} \sum_{r=N_{s}+1}^{N} (J_{\mu}^{f, \text{precise}} - J_{\mu}^{f, \text{sloppy}})$$

• use isospin symmetric masses: $m_l = m_u + m_d$.

$$J_{\mu} = \frac{2}{3}J_{\mu}^{u} - \frac{1}{3}J_{\mu}^{d} - \frac{1}{3}J_{\mu}^{s} = \frac{1}{3}(J_{\mu}^{l} - J_{\mu}^{s})$$

- Use same random vectors for *l* and *s* for noise reduction. ▶
- Disconnected Charm contributions are estimated by hopping • parameter expansion.

Simulation details

- Gluon: tree-level improved Symanzik gauge action.
- quark: $N_f = 2+1+1$ Staggered fermion action with 4 steps of $\rho = 0.125$ stout smearing.
 - up and down quarks masses are degenerated and bracket physical point (via RHMC).
 - strange and charm quark masses via RHMC.
 - use pion and kaon masses to fix m_l and $m_{s.}$
 - charm quark mass is fixed as $m_c/m_s = 11.85$. [HPQCD 14]
- scale: set by f_{π} through Wilson-flow based w_0 method.

Our strategy

- Force gradient integrator for gauge generation. [Mawhinney 11]

 - enables total speed-up by factor 2-3 compered to Omelyan integrator.
 ex) # of steps for Gauge force : 1024 ⇒ 64
 for RHMC force : 128 = 32
- Krylov-Schur method with Chebyshev acceleration.
 - Improvement of Krylov subspace methods such as Arnoldi/Lanczos.

$$\mathcal{K}_m(A, x_1) = \operatorname{span}\{x_1, Ax_1, A^2x_1, \dots, A^{m-1}x_1\}$$

- an Implicit restart technique in a numerically stable way.
- use Chebyshev polynomial: $\frac{T_n(\lambda_{\min})}{\min(T_n(\lambda))} >> \frac{\lambda_{\max}}{\lambda_{\min}}$
- compute O(1000) eigen vectors used in EigCG and disconnected trace.

Gauge ensembles

- several β -values to allow for $a \rightarrow 0$ extrapolation.
- Lattice extent is ~6fm x 9-12fm.

β	a [fm]	a⁻¹ [GeV]	Τ×L	# of conf. conn	# of conf. disc	#SRC (ud,s,c)
3.7000	0.134	1.47	64 × 48	1000	1000	(768, 128, 64)
3.7500	0.118	1.67	96 × 56	1500	1500	(768, 64, 64)
3.7753	0.111	1.78	84 × 56	1500	1500	(768, 64, 64)
3.8400	0.095	2.08	96 × 64	2500	1500	(768, 64, 64)
3.9200	0.078	2.53	128 × 80	3500	1000	(768, 64, 64)
4.0126	0.064	3.08	144 × 96	450		(768, 64, 64)

Pion and Kaon masses

- Our simulation sandwiches physical pion and kaon masses.
- We perform an interpolation to physical point and an extrapolation to continuum limit simultaneously.

Upper and Lower bound

• introduce a cut in time t_c to reduce statistical noise.

$$\Pi_{n,4i} = (-1)^{n+1} \sum_{t=0}^{t_c} \frac{t^{2(n+1)}}{\Gamma(2n+3)} C_{ii}(t)$$

- t_c is determined by the upper and lower bound.
 - Isospin triplet/singlet, $C^{I=1} = \frac{1}{2}C^l$, $C^{I=0} = \frac{1}{18}(C^l + 2C^2 + 8C^c + 2C^{\text{disc}})$
 - bound for the connected part $0 \le C^l(t) \le C^l(t_c) \exp(-E_{2\pi}(t-t_c))$ [Lehner14]
 - at large t $0 \le C^{I=0}(t)$ $\ll C^{I=1}(t) \le (\text{two } \pi \text{ state})$ $0 \ge 2C^s + 8C^c + 2C^{\text{disc}}$ $\ge -C^l(t_c) \exp(-E_{2\pi}(t-t_c))$
 - We choose $t_c = 2.7 \text{ fm}$ and average upper and lower bound.

Disconnected contribution Π^{disc}

- We obtain reasonable fit qualities with a linear a^2 dependence.
- Systematic error due to $a \rightarrow 0$ extrapolation is estimated by imposing different cuts in the lattice spacing.
- Disconnected charm gives 0.1% contribution to total disconnected contribution.

Comparison of a_{μ}^{disc} with others

• We roughly estimate a_{μ}^{disc} by combining Π_1 and Π_2 with Pade function.

Summary

- We calculated the disconnected contributions to the moments Π_1 and Π_2 of HVP.
 - $N_f = 2 + 1 + 1$ Staggered dynamical gauge simulation at physical point.
 - Spatial box size is 6fm.
 - Upper and Lower bounds are used.
 - Taking a continuum limit.

$$\Pi_1^{\text{disc}} = -1.5(2)(1) \times 10^{-3} \text{ GeV}^{-2}$$

$$\Pi_2^{\text{disc}} = 4.6(1.0)(0.4) \times 10^{-4} \text{ GeV}^{-4}$$

- Future perspective —
- We will compute $a^{\mu,HVP}$ with all systematic uncertainties.
- take into account the isospin breaking.
- larger lattice than 6fm.