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Introduction
• Muon anomalous magnetic moment aµ 

‣ one of the most precisely determined quantities in experiment. 

‣ sensitive to potential new physics contributions. 

‣ 3σ discrepancy between theory and experiment. 

• New g−2 experiments at FNAL and J-PARC are 
expected to reduce experimental error. 

• Hadronic Vacuum Polarization (HVP)  
gives dominant theoretical error ~0.6%. 

➡ We calculate moments of HVP via LQCD simulation 
with Nf = 2+1+1 dynamical Staggered fermion at physical 
point with 6fm box.
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Figure 1: Examples of diagrams contributing to the calculation of aµ. Up: QED diagrams of various
orders in ↵. Bottom: VP, LbL and weak-interaction contributions [9].

↵ from a

QED
µ (10�10)

ae 11 658 471.885 ± 0.004

Rubidium Rydberg constant 11 658 471.895 ± 0.008

Table 1: Values of aQED

µ computed using values of ↵ extracted from the measured value of ae and
from atomic physics measurements [4].

2 a
µ

: predictions and measurement

Since the first measurement (for the electron) [1] and its interpretation within the QED framework [2],
both the prediction and the measurement of a have undergone a tremendous improvement in precision,
to the point that hadronic vacuum polarization (VP) i.e. modifications of the photon propagator,
hadronic light-by-light scattering (LbL) and weak interactions must be taken into account (Fig. 1).
Understanding the value of aµ necessitates a precise knowledge of the value of the fine structure
constant ↵. From the development [4] of ae and of aµ 1,
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we see that due to the µ-to-e mass di↵erence, the development for ae converges extremely rapidly
and that the non-QED contributions are very small: a precise value of ↵ can be extracted from ae

and then injected in the calculation of aµ. The value of aµ so obtained has a very small uncertainty
and is compatible with that obtained using a value of ↵ from atomic physics (Table 1): the QED
contribution, which has been computed up to the 5th order in ↵ [4], is under excellent control. Table 2
presents the sizable contributions to the prediction and the comparison with experiment as of 2014 [5]:

1I have truncated the numerical factors.
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Moment of Π1 and Π2

aHVP
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• Hadronic contribution to the muon magnetic moment

Well known factor

Non-perturbative  
aspects of QCD

• Scalar polarization function Π(q2) can be calculated via LQCD
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• Derivative method 

‣ model-independent determination. 
‣ Good description with Pade-approximant. 
‣ aµHVP  and its error are dominated by Π1.
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‣ Integrand highly peaked near q2 = mµ2/4 ~ (50MeV)2.

Electromagnetic quark current
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Moment of Π1 and Π2

• We have three different averages Πn,ss, Πn,ts, Πn,st  
because of asymmetry L ≠ T (typically T = 1.5L). 
‣ invariant under spatial cubic rotation.

This talk

‣ This talk focus on the disconnected contribution. 
‣ In next talk, Kohtaroh will give details of all connected contributions.
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Next talk

• We split up the moments as 



Disconnected contribution
• Current: 
• Correlator: 

‣ Z2 random vectors ξ(r):   

‣ Eigen vector projection:  

‣ Noise reduction technique.  

• use isospin symmetric masses: ml = mu + md. 

‣ Use same random vectors for l and s for noise reduction. 

• Disconnected Charm contributions are estimated by hopping 
parameter expansion.
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• Gluon: tree-level improved Symanzik gauge action. 
• quark: Nf = 2+1+1 Staggered fermion action  
           with 4 steps of ρ=0.125 stout smearing. 

‣ up and down quarks masses are degenerated  
and bracket physical point (via RHMC). 

‣ strange and charm quark masses via RHMC. 

‣ use pion and kaon masses to fix ml and ms. 

‣ charm quark mass is fixed as mc/ms = 11.85. 

• scale:  set by fπ through Wilson-flow based w0 method.

Simulation details 

[HPQCD 14]



Our strategy
• Force gradient integrator for gauge generation. 
 

‣ enables total speed-up by factor 2-3 compered to Omelyan integrator. 
      ex) # of steps for Gauge force :   1024   ➡  64 
                            for RHMC force :     128   ➡  32 

• Krylov-Schur method with Chebyshev acceleration. 
‣ Improvement of Krylov subspace methods such as Arnoldi/Lanczos. 

‣ an Implicit restart technique in a numerically stable way.  
‣ use Chebyshev polynomial:  

‣ compute O(1000) eigen vectors used in EigCG and disconnected trace.
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Gauge ensembles

β a [fm] a-1 [GeV] T × L # of conf. 
conn

# of conf. 
disc

#SRC 
(ud,s,c)  

3.7000 0.134 1.47 64 × 48 1000 1000 (768, 128, 64) 

3.7500 0.118 1.67 96 × 56 1500 1500 (768, 64, 64) 

3.7753 0.111 1.78 84 × 56 1500 1500 (768, 64, 64) 

3.8400 0.095 2.08 96 × 64 2500 1500 (768, 64, 64) 

3.9200 0.078 2.53 128 × 80 3500 1000 (768, 64, 64) 

4.0126 0.064 3.08 144 × 96 450 (768, 64, 64) 

• several β-values to allow for a → 0 extrapolation. 

• Lattice extent is ~6fm x 9-12fm.



Pion and Kaon masses

• Our simulation sandwiches physical pion and kaon masses.  
• We perform an interpolation to physical point and an 
extrapolation to continuum limit simultaneously.
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Upper and Lower bound
• introduce a cut in time tc to reduce statistical noise. 

• tc is determined by the upper and lower bound. 
‣ Isospin triplet/singlet, 

‣ bound for the connected part 

‣ at large t 

‣ We choose tc = 2.7fm and  
average upper and lower bound.
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FIG. 2. Top: an upper/lower bound on ⇧l
1 is obtained

by setting the timelike correlator to a two-pion decay/zero
starting at a separation of tc. Bottom: upper/lower bound
on ⇧disc

1 is obtained by setting the correlator to zero/to the
connected correlator with a 2-pion decay.

where E2⇡ is the energy of two pions with angular mo-
mentum J = 1. From this we can obtain a lower and an
upper bound on ⇧l

1,s4. Typically the two bounds agree
for t

c

& 3 fm, for an example see the top plot of Fig. 2,
which shows an ensemble at � = 3.9200. Similar conclu-
sion is reached in case of the second derivative ⇧l

2,s4. In
our analyses we use t

c

= 3.1 fm on the light connected
timelike correlators and averaged the two bounds.

A similar bound as in (2) involving the energy of three
pions could be set up for the isospin singlet channel, this
would constrain a combination of the disconnected and
connected contributions. The disconnected contribution
alone can be constrained for large enough time separa-
tions, where the isospin singlet channel can be neglected
compared to the triplet. Here we have

0 � [2Cs + 8Cc + 2Cdisc](t) � �C
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. (3)

This gives an upper and a lower bound on ⇧s + 4⇧c +
⇧disc, which can be used to determine t

c

after which the
two bounds agree within errors. In practice dropping the
connected strange and charm contributions in (3), does
not make a di↵erence when determining t

c

. In the bottom
plot of Fig. 2 we plot the upper and lower bounds on ⇧disc

in case of an ensemble at � = 3.9200. In our analyses we
averaged the two bounds at a distance of t

c

= 2.7 fm.
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FIG. 3. Continuum extrapolations of the light, strange,
charm and disconnected contributions to ⇧1. The lines are
fits linear in a2, the di↵erent lines correspond to di↵erent cuts
in the lattice spacing.

RESULTS

To obtain our final results in the continuum limit and
at the physical point, we fit the lattice results to a func-
tion which depends on the pion and kaon masses and on
the lattice spacing squared a

2. Since the simulations were
done around the physical point, a linear pion/kaon mass
dependence is always su�cient. For the light, strange and
disconnected contributions reasonable fit qualities can be
achieved with a linear a2 dependence.

First let us look at the light quark contribution ⇧l.
We pay special attention to the di↵erence between the
averages ⇧l

ss

, ⇧l

4s and ⇧l

s4. Although there are ensem-
bles where we see significant di↵erence between them, we
identify these di↵erences as statistical fluctuations (at the
current level of precision). If we assume no di↵erence be-
tween the three averages and fit all ensembles and all
three averages together in one fit, we get a reasonable
fit quality �

2
/dof = 45/41. Also if we add additional fit

parameters describing the di↵erence between the three
averages, they come out zero within errorbars. This re-
mains true even after dropping the coarser lattices from
the fit. Therefore we average over the combinations ss,
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Disconnected contribution Πdisc

• We obtain reasonable fit qualities with a linear a2 dependence. 

• Systematic error due to a → 0 extrapolation is estimated by imposing different 
cuts in the lattice spacing. 

• Disconnected charm gives 0.1% contribution to total disconnected contribution.
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Comparison of aµ
disc with others

• We roughly estimate aµdisc by combining Π1 and Π2 with Pade function.

rough estimation
Preliminary



• We calculated the disconnected contributions to the 
moments Π1 and Π2 of HVP. 
‣ Nf = 2+1+1 Staggered dynamical gauge simulation at physical point. 

‣ Spatial box size is 6fm. 

‣ Upper and Lower bounds are used. 

‣ Taking a continuum limit. 

̶ Future perspective ̶  

• We will compute aµ,HVP with all systematic uncertainties. 

• take into account the isospin breaking. 
• larger lattice than 6fm.

Summary

⇧disc
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⇧disc
2 = 4.6(1.0)(0.4)⇥ 10�4 GeV�4


