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Immediate roadmap
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® 400x increase in SP node performance accompanied by 2x increase in interconnect

e Business as usual is not an option for algorithms



Growing on chip parallelism...

http://www.agner.org/optimize/

Core simd Year Vector bits ~ SP flops/clock/core  cores  flops/clock

Pentium 111 SSE 1999 128 3 1 3
Pentium IV SSE2 2001 128 4 1 4
Core2 SSE2/3/4 2006 128 8 2 16
Nehalem SSE2/3/4 2008 128 8 10 80
Sandybridge AVX 2011 256 16 12 192
Haswell AVX2 2013 256 32 18 576

KNC IMCI 2012 512 32 64 2048

KNL AVX512 2016 512 64 72 4608

Skylake AVX512 2017(?) 512 64 28 1792

e Growth in core counts

e Growth in SIMD parallelism

e Growth in complexity of memory heirarchy

® Interconnect performance failing to grow as fast as processor and memory performance

Standard industry solution is to dump it on the progammer!



Wireloads and geometry

Gate Mid-Level Metal
Length Dielectric Metal p | Width  Aspect Ruire Cuire
(nm) | Constant x | (u2-cm) | (nm)  Ratio  (mQ/um) (fF/um)
250 3.9 3.3 500 14 107 0.202
180 2.7 2.2 320 2.0 107 0.333
130 2.7 2.2 230 2.2 188 0.336
100 1.6 2.2 170 2.4 316 0.332
70 1.5 1.8 120 2.5 500 0.331
50 1.5 1.8 80 2.7 1020 0.341
35 1.5 1.8 60 2.9 1760 0.348

Simple physics explains computer architecture: model wire as rod of metal L x nr?

e Charge: Gauss's law
2nrLE = 9
€

® Resistance
=, L
T
e Capacitance
C=Q/V =2rLe/log(r/r)

® Time constant
L2 L2
RC = 2psﬁ/log(rg/r) ~
RC wire delay depends only on geometry: Shrinking does not speed up wire delay!

® ‘“copper interconnect” (180nm) and “low-k* dielectric (100nm) improved p and €

Multi-core design with long-haul buses only possible strategy for 8 Billion transistors

e Low number of long range “broad” wires (bus/interconnect)

e High number of short range “thin” wires



3D integration

e Apply to memory buses with through-silicon-via’s (TSVs)!

e 2.5D : Integrate memory stacks on an interposer (Intel, Nvidia, AMD)
In package memory: long thin wires — short broad fast wires

e 3D : Direct bond memory stacks to compute (PEZY, mobile, Broadcom)
3D memory could grow the bus widths almost arbitrarily

Massive replica counts from silicon lithography compared to macroscopic assembly

There's plenty of room at the bottom (Feynman); Avagadro’s number is big!

TSV stacked HMC Micron

e This years tech:

e 16 GB (AXPY 400 GB/s) Intel Knights Landing (KNL)
e 16-32 GB (AXPY 600 GB/s) Nvidia Pascal P100
e Regular Xeon ... when ?



Other trends in microelectronics

® Novel non-volatile memory, NVDIMM's

e Phase change memory (amorphous/crystaline glass cell) should increase memory density.
Micron/Intel 3D Xpoint branding: 4x higher density than DRAM; SSD’s — NVDIMMs
eetimes.com says it is PCM
Multiple JEDEC NVDIMM approaches
Disruptive for large memory applications (e.g. eigenvectors, multi-hadron)

® Integration of network

o KNL-F will integrate 2 x 100Gbit/s Omnipath 1 network on package (50 GB/s bidi)
o KNH will integrate Omnipath 2 network on die (Aurora)

e Skylake will have integration with Omnipath (Intel SSF)

e NVLink scales to 8 GPU’s 160GB/s bidi; not a cluster interconnect

e Silicon photonics

e 100Gbit/s copper cables cost under 100 USD
e 100Gbit/s active optical cables cost around 1000 USD
e reduce the cost and power of driving fibre cable to be closer to cost of copper
use a normal silicon process for laser components
® Hope for active optical — passive optical in future
® Room sized networks will necessarily remain macroscopic and a problem

Simplified Ruggedized
Fewer parts - lower cost
/ g e
Up to 64 Fibers at 25G More Density

4

Up to 4 rows of 16 fibers.

Reduced footprint

(e Up to 1.6 terabits of data per cable RS




Computing basics

Computers retain data in registers and memory

® Registers are like the store/recall buttons in a calculator

e Memory is an indexable paper-pad for retaining values

® Processors are merely state machines, containing internal variables (registers) and a current
instruction address

e Von Neumann machines

1. Fetch instruction from memory address pointed to by instruction pointer
2. Interpret and carry out instruction
Modifies registers or memory as appropriate
3. Update instruction pointer (increment or branch)
4. Goto 1

e What if memory access takes 500 cycles ?



Caches and locality

Text book computer engineering: (e.g. Hennessy & Patterson)
e Code optimisations should expose spatial data reference locality — Large cacheline, wide buses

e Code optimisations should expose temporal data reference locality — Large cache

o Memory systems are granular
Cached CPU Y sy g

o If you only access 1 byte of contiguous
data, you still pay to transfer 128Bytes
e Big gain from spatial locality of

FP

Integer .
o reference: use everything that gets
transfered!
Cache
Single
Memory instruction|

‘ You don't buy a multipack if you only want one item!




CPU SIMD model

SIMD brings a new level of restrictivness that is much harder to hit
e Code optimisations should expose spatial operation locality

® Obvious applications in array and matrix processing but hard in general

SIMD CPU

FP [z W

word word word word

.

Integer

Single
instruction

e Must arrange to have same operation applied to consecutive elements of data

Only then can granular memory transfers and SIMD execution be exploited
typically drop to “intrinsic functions” or assembly for CPU's

change data layout from the standard language defined array ordering

we are fighting against the languages!



GPU SIMT model

SIMT — coalesced reads

P
CPU GPU
Integer Integer scalar vector
Floating vector vector
Caching yes yes
Contiguous vec loads default dynamically coalesced
Cache Random vec loads gather/scatter default

H Thread divergence write masks hardware managed

Single
e [

instruction|
e Any grouping of data references works

e For performance must arrange to have same operation applied to consecutive elements of
data

e Coalesced accesses detected at runtime by GPU's
e granular memory transfers and SIMD execution can then be exploited
e Performance loss if threads diverge in address or control flow

e Vectorisable loop ordering and data layout identical between GPU and CPU

contiguous block memory accesses with same operations performed on adjacent words |.

Chip Clock blocks per bock SP madd issue SP madd peak

GP100 1.4 GHz 56 SM'’s 2 IB/RF 32 112x2 3584 105 TF/s

KNL 1.4 GHz 36 L2 tiles 2 cores 32 72x%2 2304 6.4 TF/s
Broadwell 25 18 cores 16 18x2 576 1.4 TF/s

Skylake ? 28 cores 32 28x2 1792 4.4 TF/s (EST)



Intel Knight's Landing Deep Dive

Intel HotChips Talk Hyperlink
e 2016 NERSC (Cori-l), Argonne (Theta) with Cray Aries
e 2016 Cineca (Marconi), Tsukuba/Tokyo (Oakforest-PACS) with Omnipath
e 2018/19 Aurora (Knights Hill, Omnipath 2.0)

Knights Landing Overview

2x16 xa
|
M:Wﬂ Mmﬂ o e Chip: 36 Tiles interconnected by 2D Mesh
I 1

v ¥ Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDRA4: 6 channels @ 2400 up to 384GB
36 Tiles 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by JR— Node: 1-Socket only
2D Mesh Fabric: Omni-Path on-package (not shown)
Interconnect
Vector Peak Perf: 3+TF DP and 6+TF SP Flops.
Scalar Perf: ~3x over Knights Corner
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http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf

Intel Knight's Landing Deep Dive

Core & VPU

Out-of-order core w/ 4 SMT threads
VPU tightly integrated with core pipeline

Fetch &
Decode

Icache

(32KB 8-way)

—
Allocate/
2-wide Decode/Rename/Retire REERE
ROB-based renaming. 72-entry ROB & Rename ——
Buffers

Up to 6-wide at execution
Intand FP RS 000.

MEM RS inorder with 000 completion. Recycle Buffer Integer RF
holds memory ops waiting for completion.

Intand Mem RS hold source data. FP RS does not.

Integer Rename Buffer

FP Rename Buffers R
2x64B Load & 1 64B Store ports in Dcache. FPRE Buffer
1%t level uTLB: 64 entries
27 level dTLB: 256 4K, 128 2M, 16 1G pages

L1 Prefetcher (IPP) and L2 Prefetcher.
46/48 PA/VA bits

Fast unaligned and cache-line split support.
Fast Gather/Scatter support



Intel Knight's Landing Deep Dive

KNL ISA

E5-2600 E5-2600v3
(SNBY)  (Hsw)

KNL implements all legacy instructions
* Legacy binary runs w/o recompilation
« KNC binary requires recompilation

KNL introduces AVX-512 Extensions
« 512-bit FP/Integer Vectors

« 32registers, & 8 mask registers

« Gather/Scatter

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi= Intel® Xeon Phi™ processor



Nvidia Pascal Deep Dive

Tesla Products Tesla K40 Tesla M40 Tesla P100
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal)
SMs 15 24 56
TPCs 15 24 28
FP32 CUDA Cores / SM 192 128 64
FP32 CUDA Cores / GPU 2880 3072 3584
FP64 CUDA Cores / SM 64 4 32
FP64 CUDA Cores / GPU 960 96 1792
Base Clock 745 MHz 948 MHz 1328 MHz
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz
L e ] PeakFP32 GFLOPs! 5040 6840 10600
— e Peak FP64 GFLOPs* 1680 210 5300
Texture Units 240 192 224
Memory Interface 384-bit GDDR5 384-bit GDDRS 4096-bit HBM2
Memory Size Up to 12 GB Up to 24 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB
Register File Size / SM 256 KB 256 KB 256 KB
Register File Size / GPU 3840 KB 6144 KB 14336 KB
TDP 235 Watts 250 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion
GPU Die Size 551 mm? 601 mm? 610 mm?
Manufacturing Process 28-nm 28-nm 16-nm FinFET

1 The GFLOPS in this chart are based on GPU Boost Clocks.



Nvidia Pascal Deep Dive

® Pascal uses virtual memory pages “Page Migration Engine”
® Programming model simplification, less reliant on exposed offload

e Pulls pages from CPU vm system on demand, locks out CPU
e With O/S support distinction between host and device memory eroded
e Call special allocator to access from both host and device

e NVLink provides 160 GB/s bidi interconnect for up to 8 GPU’s (DGX-1)

® Some tech press sites (trustable?) say next generation Volta will become cache coherent

=
Pascal Unified Memory* I I
void sortfile(FILE *fp, int N) { kel Switch Switch

char *data;

data = (char *) oc(N); »
fread(data, 1, N, fp); P100 | Plﬂ(l‘ | 100 | )Pmm
gsort<<<...>>>(data,N,1,compare);

udapevicesynchronize(Q);

. ( | | | | |
use_data(data); P100 PJDO pl_oo ‘[pj__oo‘
free(data);

*with operating system support NVLink

<« PCle



Fine grid Dirac matrix bandwidth analysis

® [*local volume; 8/16 point stencil

e Multi-RHS and DWF take Ly = Nips.
Suppresses gauge field overhead;
o Cache reuse X Ngencii on Fermion possible

® Accesses per 4d site of result

e Fermion: Nyencit X (Ns € {1,4}) X (N¢ = 3) X (N € {1,16}) complex
o Gauge: 2Ny x N2 complex

e Flops
® Nyencit X Nps SU(3) MatVec: 66 x Nys X Nyencit (+ spin projection)
Action Fermion Vol Surface Ns N Nips Flops Bytes Bytes/Flops
HISQ &) 3x8x L3 1 1 1 1146 1560 1.36
Wilson L4 8x 3 4 2 1 1320 1440 1.09
DWF LA xN 8x L3 4 2 16 Ny X 1320 Ny x 864 0.65
Wilson-RHS [k 8x L3 4 2 16 Ny X 1320 Ny, x 864 0.65
HISQ-RHS 4 3x8x L3 1 1 16 Ny X 1146 Nygo x 408 0.36
* ~ % of data references come from off node

Scaling fine operator requires interconnect bandwidth

B,
Buetwork ~ 275 xR

where R is the reuse factor obtained for the stencil in caches



Intel Knight's Landing Performance Results



Vectorisation strategy

Vector = Matrix x Vector

Reduction of vector sum
is bottleneck for small N

Mal‘ly vectors = many matrices X many vectors

N No reduction or SIMD lane
~ crossing operations.
Ve

IMD interleave

e SIMD most efficient for independent but identical work

e Apply N small dense matrix-vector multiplies in parallel



Back to the Future

Q) How do we find copious independent but identical work?
A) Remember that SIMD was NOT hard in the 1980’s (CM, APE...)

Connection Machine Model CM-2 and DataVault System

The Connection Machine Model CM-2 uses thousands of processors operating in parallel to achieve
peak processing speeds of above 10 gigaflops. The DataVault mass storage system stores up to

60 gigabytes of data.

e Resurrect Jurassic data parallel programming techniques: cmfortran, HPF
e Address SIMD, OpenMP, MPI with single data parallel interface

e Map arrays to virtual nodes with user controlled layout primitives
o Conformable array operations proceed data parallel with 100% SIMD efficiency

e CSHIFT primitives handle communications

JURASSIC PARK




GRID data parallel template library

Ordering Layout Vectorisation Data Reuse
Microprocessor Array-of-Structs (AoS) Hard Maximised
Vector Struct-of-Array (SoA) Easy Minimi:

Bagel Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

www.github.com/paboyle/Grid

vRealF, vRealD, vComplexF, vComplexD
template<class vtype> class iScalar

vtype _internal;
}
template<class vtype,int N> class iVector
{

vtype _internall[N];
};
template<class vtype,int N> class iMatrix
{

vtype _internal[N][N];

PAB, Cossu, Portelli, Yamaguchi: arXiv:1512.03487; Poster 184

typedef Lattice<iMatrix<vComplexD> > LatticeColourMatrix;

typedef iMatrix<ComplexD> ColourMatrix;

Automatically transform layout of arrays of mathematical objects using vSIMD template parameter

Conformable array operations are data parallel on the same Grid layout

Internal type can be SIMD vectors or scalars

LatticeColourMatrix A(Grid);
LatticeColourMatrix B(Grid);
LatticeColourMatrix C(Grid);
LatticeColourMatrix dC_dy(Grid);

C = AxB;
const int Ydim = 1;

dC_dy = 0.5%Cshift(C,Ydim, 1 )
- 0.5%Cshift(C,Ydim,-1 );
High-level data parallel code gets 65% of peak on AVX2

Single data parallelism model targets BOTH SIMD and
threads efficiently.



Grid performance

Architecture Cores GF/s (Ls x Dw)  peak

Intel Knight's Landing 7250 68 770 6100
Intel Knight's Corner 60 270 2400
Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400

Intel Ivybridgex2 24 270 920
AMD Interlagosx4 32 (16) 80 628

2500

‘owa.dat' u 10:11 ——
‘owa.dat u 10:13
380 GBS

2000

1500

1000

500

0
1000 10000 100000 1x108 1x107 1x10°

bandwidth (purple), and to lhtu of A"\L QD‘
Knight's Landing memory system profile SU3 x SU3 example
(GB/s vs footprint bytes/core)



Grid Dirac operator performance (GFIs)

Grid multi-RHS Wilson Dslash and DWF

st g8 L
10 okl 650 e 1 thread per core fastest after writing in
Lsvec i Bsstua S5 N
e el Dot e assembler (not intrinsics)
wol PR e R
A e Macro system and mixed C++/asm

minimises pain

e Hand allocation of registers evades
stack eviction, cache more
deterministic

e Hand prefetch to L2 and to L1

e 8.2.2.2 cache blocking

° e Less reuse than | hoped for

0 200 200 600 B0 1000 1200 400 1600
footprint (MB)

e Single core instructions-per-cycle is 1.7
(85% of theoretical)
Grid single node, single precision o Multi-core L1 hit rate is 99%

performance for multiRHS Wilson term (perfect SFW prefetching)

Knight's Landing 7250, 68 core e Multi-core MCDRAM bandwidth 97%
e Used 66 cores - a few empty cores (370GB/s)

lly f: .
usually faster ® Provably unimprovable ?

One KNL substantially faster than two
Broadwell's (18+-18) out of cache



QPhiX performance on KNL and broadwell

e “Optimizing Dirac Wilson Operator and linear solvers for Intel(R) KNL"
B. Joo - Jefferson Lab, Newport News, VA, USA
D. D. Kalamkar - Intel Parallel Computing Labs, India T. Kurth - NERSC
K. Vaidyanathan - Intel Parallel Computing Labs, India
A. Walden - Old Dominion University, Norfolk, VA, USA

Wilson Dslash a0 Wilson 6 Wilson BCGStab
v vew sof[ore voa =
39 39
3’ Z2s 225
g £ g2
T T 15 15|
= Fao F g
os as
S ress e ww % rae s wuwE °% 7 d e s wn
ssockels ssockels
Clover Dslash a0 Clover CG. Clover BiCGStab
[ere vom 3ol [ere voa 38{[ve Vo'
30 39
&, & 20 & 20|
T iz 18| @ 15|
! F o F 19
os as
% s ws %% a6 s w e ue %% 74

a6 O
#sockets #sockets #sockets

e Single precision

o first results | have seen on multi-node performance with Omnipath



Multi RHS single node HISQ

Patrick Steinbrecher, PhD student, Bielefeld & BNL
1200

GFlop/s
R
1000 |
1p32, ECC
800
/ HISQ Dslash 48°x12
600 [/ ' '
/! Knights Landing 7250 e
a0l |
‘
200 __ #right-hand sides |
0 5 10 15 20

e Single precision, single node performance library for valence measurement
e Particular emphasis on use in disconnected diagrams at finite temperature
e Adopted similar wrapping of vector classes to Grid approach

e Patrick has done a really good job



MILC on KNL

® MILC multi-mass CG (Ruizi Li, Thursday@15:40)

e Double precision

Multimass CG Performance

Multi_mass CG performance
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Nvidia Pascal Performance Results



QUDA performance

e Algorithms and machines, Thu @ 14:20, Wagner, Thu @ 14:40, Clark

Pascal results and code by Kate Clark, Nvidia

Clover + Dw 16 RHS Dw
2500 v v v v v v v T r 3000 T T T T T T
s pes
ez X ez X
P16 p16
2000 2500
2000
2 1500 2
& & « X
5 @ 1500
8 X &
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1000
+
¥ +
500 + 500
0 0
0 5 0 15 20 25 8 3 40 45 0 5 10 15 20 25 8 3 40 45
L L
Clover term + Dy, 16 RHS Dy,
2000 P 16 RHS Dw across single 8 GPU node
single X 10000 e
« X X X X X X 10 X
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o X
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g 1000 X &
8 + 4+ o+ o+t %
& Lt 8 4000 +
X ¢
500 +
4
2000
X
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Multi RHS Staggered Scaling across DGX-1 8 gpu system



Programming more generally for GPU

e Offload to GPU poses difficulty to code maintainance and performance portability

e Big investment in QDP-JIT for example
e PoS LATTICE2011 50 (Winter)
PoS LATTICE2012 (2012) 185 (Winter)
e ‘“operator =" prints simple GPU code, compiles, dynamic links, caches

e PB, Meifeng Lin reduced Grid ET engine to 200 line example

e Remove use of C++ libraries in assembling “Expression objects”
e Remove host references in expression objects

e Can offload with CUDA kernel call to evaluate expression using “compile time compilation”

e Will become even easier with unified memory model

initialised arrays
vi={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
v2={2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}

v3 = vi+v2 = {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}

v3 = vi+v2+vixv2 = {5,5,5,56,5,5,5,5,5,5,6,5,5,5,5,5}

e James Osborn QEX based on “NIM” language; controllable “nim to C” mapping in principle
enables GPU translation
Algorithms and Machines, Thursday@14:00



Speedup (TFlops)
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Reminder of BG/Q scalability

Weak Scaling for DWF BAGEL CG inverter

y///+
,/'/
,/'/
/'//
/*’
//*(//
//*//
/*//
//*(/
A M Lawrence Livermore %
p v National Laboratory  [geefois
25000 50000 75000 100000

# of BG/Q Nodes

Code developed by Peter Boyle at the STFC funded DiRAC facility at Edinburgh

e RBC-UKQCD simulation programme has regularly sustained over 1 PF/s on MIRA



Interconnect

Bhetwork ~

L

e Determine reuse factor via Bpetwork = Pawr *0.65/L

e This is the reception bandwidth, and double this

required bidirectional

® Integration of 2x100 Gbit/s network ports on KNL
package significant

® Integration of Omnipath-2 on KNH is significant

® Results from Edison, Cori Phase-1, and by Silicon

B
memory

KNL with Omni-Path™

Omni-Path™ Fabric integrated on package
First product with integrated fabric

Connected to KNL die via 2 x16 PCle* ports.
Output: 2 Omni-Path ports
= 25 GB/s/port (bi-dir)
Benefits
* Lower cost, latency and power
= Higher density and bandwidth
= Higher scalability

Graphics
Nodes Memory (GB/s) Bidi network req (GB/s) Node Network Defvered Require
L=10 | L=16 | L=32 L=64 -
KNL Cray Aries 11 64
2xBroadwell 100 100 16 8 -
KNL Single EDR 23 64
400 100 64 32

KNL Dual EDR 45 64
P100 700 200 128 64 KNL | Dual Omnipath 50 peak 64
DGX-1 5600 - 975 487 243 P P

e Summit and Sierra are unlikely to scale beyond one node

e Cori and Theta could really have done with dual rail EDR or Omnipath

® Aurora likely scalable

e Systems useful for ensemble valence analysis, DD preconditioner in multigrid

e Dual 100GBit/s KNL likely scalable on fine operator




Silicon Graphics ICE-X network
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Can embed 2" QCD torus inside hypercube
so that nearest neigbour comms travels
single hop (PAB, SGI)

Gray counter encode node coordinates;
alternative to large torus machines

Dual rail fat tree would also work, greater
switch/cable cost, limit to system size

Perfect weak scaling obtained; results on
256 nodes

Results from dual Broadwell cluster,
Mellanox EDR (single/dual)

Drop in performance from out of cache is
expected to be better on KNL



Algorithms

| have chosen to focus on two aspects that | feel are most fundamental to continued progress

® Multi-scale fermion solvers

® Multi-scale integration
Not covered in detail (but also fundamental):
e Topological sampling
e Covered by Michael Endres Tuesday © 9:45
e Metadynamics, Sanfilippo Tuesday @ 18:10

e Caution on both: Symptomatic relief is not necessarily a cure
® Want solutions that address all forms of critical slowing down in an exact MCMC run far
enough to converge on the fixed point of the process

e Approaches to free energy, density of states and derived observables, reviewed by Langfeld

e Applications of Jarzynski's relation in lattice gauge theories; Nada Tuesday©@17:10
e Computing the density of states with the global HMC;Pellegrini Tuesday@17:30
e Overcoming strong metastabilities with the LLR method;Lucini Tuesday@17:50



Multi-scale fermion solvers

Index theorem: expect a set of topological modes protected only by quark mass
o Deflate these modes: big reduction in condition number of Dirac operator
Cost reduced to O(V): concurrent works
e arXiv:0706.2298 Luscher
e arXiv:0707.4018 Brower/Clark/Brannick/Osborn/Rebbi
Solved problem in valence sector for

o Wilson
arXiv:0706.2298 (Luscher)
arXiv:0707.4018, arXiv:0710.3612, arXiv:0811.4331 (BCBOR)

e Clover fermions
arXiv:1011.2775 Osborn, Babich, Brannick, Brower, Clark, Cohen, Rebbi,
arXiv:1202.2462, arXiv:1303.1377, arXiv:1307.6101 Frommer, Kahl, Kreig, Leder,
Rothman

Gauge evolution: coarsening basis must recomputed after each timestep, reversibility requires
higher accuracy

e arXiv:0710.5417 Luscher
e arXiv:1307.6101 Frommer, Kahl, Kreig, Leder, Rothman

Nested solver approaches for overlap
e arXiv:1410.7170 (Brannick, Frommer, Kahl, Rottman, Strebel
5d domain wall approaches using the normal equations

e arXiv:1205.2933 Cohen
e arXiv:1402.2585 PAB



Multi-scale fermion solvers

Capture IR dynamics in a subspace M¢; ~ 0

Local coherence = chop into blocks ¢

Schur decompose the matrix into a subspace and the orthogonal complement
- | Mss M - 1 MM} S 0 1
M=UDL = [ M: Ms | = | o 1 0 My || MMy

Represent the matrix M exactly on this IR subspace by computing its matrix elements
little Dirac operator or coarse grid matrix

AR =(07IMI02) i (Mss)=AP197)(9]).

Inversion via Krylov methods; use in a preconditioner accelerating IR modes
Smoother (e.g. Msap) used as preconditioner to address UV modes.

Double precision outer Krylov solver mops up the rest in a few iterations
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Staggered multigrid

Weinberg, Brower, Clark, Strelchenko, Algorithms and Machines, Thursday©@15:00.

Staggered 2D Schwinger Model: 1282, 8 = 10.0, Nyeo = 4
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o Coarsen indefinite D directly

® Project low subspace into definite chirality basis prior to coarsening



5D chiral fermion multigrid
Poster 184: Yamaguchi, PAB

e Coarsen indefinite %D directly
e Project low subspace into definite chirality basis prior to coarsening *
e Use H = ¥%R5Dgnr Hermitian operator and conjugate residual as basis

e Also works for continued fraction overlap
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e Krylov polynomial approximates P(z) — % over region in complex plane encircling the pole at
zero

® impossible to reproduce phase winding over this region with any polynomial
%z’ldz =2mi # %P(z)dz =0

® Phase response is the problem: make the system real indefinite using ¥
® These operators are nearest neighbour and preserve sparsity in a coarse space.

® Chebyshev filters for subspace generation

Ltrick borrowed from Clark



Multilevel integration for (quenched) fermionic observables

® Domain decomposition and multilevel integration
e Stefan Schaefer, Macro Ce, Algorithms and Machines, Wednesday@09:00,09:20.
e Presently quenched only

Two-Level algorithm
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Other algorithmic work

Incomplete list:

e Twisted mass multigrid
Simone Bacchio, Algorithms and Machines, Wednesday©10:00.

® DD-a-AMG solver library:
Matthais Rottmann Algorithms and Machines, Wednesday@09:40.

www.github.com/DDalphaAMG

e Implementation of TWQCD's Exact one flavour algorithm for DWF (Murphy
Wednesday©@10:20)



Multigrid and machines

Machine problems with multigrid
e Amdahl:

o Coarse space becomes difficult to fine grain parallelise

e Sublattice site parallelism (Clark)

e Inexact deflation (Luscher), HDCG: dense matrix deflation with many (eigen)vectors at
coarsest levels

e Communications:

Is domain decomposition in multigrid smoothers the best option in future?

Smoothers should minimise use of network and maximise cache reuse

Preserve information selectively on domain boundaries when compute >> communication
HDCG:

polynomial smoother & reduce precision to 7 mantissa bits in smoother

same flop count in both cases

preserves the most significant bits of information flow

whereas replacing with DD solve (flush to zero) suffers reduced convergence rate

Precision of inner communication Exponent Manlissa‘Ouler iteration count

64 bit 11 bit 52 bit 168
32 bit 8 bit 23 bit 168

16 bit 8 bit 7 bit 168



Summary...

Tremendous growth in computer power from many core CPU’'s and GPU's

e Khnights Landing: 0.5-1TF/s single node SP
e Nvidia Pascal: 1-2 TF/s single node SP

Interconnects are not keeping pace
e Fine grid operator requires at least 2:1 ratio of EDR/OPA to compute chips
Multigrid solver algorithms solved critical slowing down in valence sector for Wilson/Clover

e Multigrid algorithms appearing for other actions (Staggered, DWF, Twisted Mass)
e Successful application in HMC exists for Wilson/Clover, but not yet widespread

Multilevel integration algorithms interesting

Algorithms that maintain ergodicity are a big challenge to using this power usefully
(Endres talk)

Use of fp64/fp32/fp16 arithmetic in preconditioners or variance reduction is not yet fully
explored



And finally...

e The end of Moore scaling has long been anticipated.
e But 3rd space dimension is unused: increase transistor density, reduce wire delays

e Unlikely to give more than several orders of magnitude but very important
changes

e Engineering barriers exist but easier than many problems EE has already solved

o We are now seeing first steps in this direction

Suburban sprawl — Metropolis



