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• Algorithms



Immediate roadmap

System!aIributes! NERSC!!
Now!

OLCF!
Now!

ALCF!!
Now! NERSC!Upgrade! OLCF!Upgrade! ALCF!Upgrades!

Name 
Planned Installation Edison TITAN MIRA Cori 

2016 
Summit 

2017-2018 
Theta 
2016 

Aurora 
2018-2019 

System peak (PF) 2.6 27  10 > 30 150  >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + 
High Bandwidth 
Memory (HBM)

+1.5PB persistent 
memory  

> 1.74 PB 
DDR4 + HBM + 

2.8 PB 
persistent 
memory 

>480 TB DDR4 + 
High Bandwidth 
Memory (HBM) 

> 7 PB High 
Bandwidth On-

Package Memory 
Local Memory and 
Persistent Memory 

Node performance 
(TF) 0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors Intel Ivy 
Bridge  

AMD 
Opteron    
Nvidia 
Kepler   

64-bit 
PowerPC 

A2 

Intel Knights 
Landing  many 

core CPUs  
Intel Haswell CPU 

in data partition 

Multiple IBM 
Power9 CPUs & 
multiple Nvidia 
Voltas GPUS  

Intel Knights 
Landing Xeon Phi 
many core CPUs 

 

Knights Hill Xeon 
Phi many core 

CPUs   

System size (nodes) 5,600 
nodes 

18,688 
nodes 49,152 

9,300 nodes 
1,900 nodes in 
data partition 

~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries Dual Rail EDR-
IB   Aries 

2nd Generation Intel 
Omni-Path 

Architecture 

File System 
7.6 PB 

168 GB/
s, Lustre® 

32 PB 
1 TB/s, 
Lustre® 

26 PB 
300 GB/s 
GPFS™ 

28 PB 
744 GB/s  
Lustre® 

120 PB 
1 TB/s 

GPFS™ 

10PB, 210 GB/s 
Lustre initial 

150 PB 
1 TB/s 
Lustre® 

%ASCR%%Compu+ng%Upgrades%At%a%Glance%
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• 400x increase in SP node performance accompanied by 2x increase in interconnect

• Business as usual is not an option for algorithms



Growing on chip parallelism...

http://www.agner.org/optimize/

Core simd Year Vector bits SP flops/clock/core cores flops/clock
Pentium III SSE 1999 128 3 1 3
Pentium IV SSE2 2001 128 4 1 4

Core2 SSE2/3/4 2006 128 8 2 16
Nehalem SSE2/3/4 2008 128 8 10 80

Sandybridge AVX 2011 256 16 12 192
Haswell AVX2 2013 256 32 18 576

KNC IMCI 2012 512 32 64 2048
KNL AVX512 2016 512 64 72 4608

Skylake AVX512 2017(?) 512 64 28 1792

• Growth in core counts

• Growth in SIMD parallelism

• Growth in complexity of memory heirarchy

• Interconnect performance failing to grow as fast as processor and memory performance

Standard industry solution is to dump it on the progammer!



Wireloads and geometry

C3
C2

C4

C5

W

L

S

C1

C3

Simple physics explains computer architecture: model wire as rod of metal L×πr2

• Charge: Gauss’s law

2πrLE =
Q

ε

• Resistance

R = ρ
L

πr2

• Capacitance
C = Q/V = 2πLε/log(r0/r)

• Time constant

RC = 2ρε
L2

r2
/ log(r0/r)∼ L2

r2

RC wire delay depends only on geometry: Shrinking does not speed up wire delay!

• “copper interconnect” (180nm) and “low-k“ dielectric (100nm) improved ρ and ε

Multi-core design with long-haul buses only possible strategy for 8 Billion transistors

• Low number of long range “broad” wires (bus/interconnect)

• High number of short range “thin” wires



3D integration

• Apply to memory buses with through-silicon-via’s (TSVs)!

• 2.5D : Integrate memory stacks on an interposer (Intel, Nvidia, AMD)
In package memory: long thin wires → short broad fast wires

• 3D : Direct bond memory stacks to compute (PEZY, mobile, Broadcom)
3D memory could grow the bus widths almost arbitrarily

Massive replica counts from silicon lithography compared to macroscopic assembly

There’s plenty of room at the bottom (Feynman); Avagadro’s number is big!

• This years tech:

• 16 GB (AXPY 400 GB/s) Intel Knights Landing (KNL)
• 16-32 GB (AXPY 600 GB/s) Nvidia Pascal P100
• Regular Xeon ... when ?



Other trends in microelectronics
• Novel non-volatile memory, NVDIMM’s

• Phase change memory (amorphous/crystaline glass cell) should increase memory density.
Micron/Intel 3D Xpoint branding: 4x higher density than DRAM; SSD’s → NVDIMMs
eetimes.com says it is PCM

• Multiple JEDEC NVDIMM approaches
• Disruptive for large memory applications (e.g. eigenvectors, multi-hadron)

• Integration of network

• KNL-F will integrate 2 x 100Gbit/s Omnipath 1 network on package (50 GB/s bidi)
• KNH will integrate Omnipath 2 network on die (Aurora)
• Skylake will have integration with Omnipath (Intel SSF)
• NVLink scales to 8 GPU’s 160GB/s bidi; not a cluster interconnect

• Silicon photonics

• 100Gbit/s copper cables cost under 100 USD
• 100Gbit/s active optical cables cost around 1000 USD
• reduce the cost and power of driving fibre cable to be closer to cost of copper

use a normal silicon process for laser components
• Hope for active optical −→ passive optical in future
• Room sized networks will necessarily remain macroscopic and a problem



Computing basics

Computers retain data in registers and memory

• Registers are like the store/recall buttons in a calculator

• Memory is an indexable paper-pad for retaining values

• Processors are merely state machines, containing internal variables (registers) and a current
instruction address

• Von Neumann machines

1. Fetch instruction from memory address pointed to by instruction pointer
2. Interpret and carry out instruction

Modifies registers or memory as appropriate
3. Update instruction pointer (increment or branch)
4. Goto 1

• What if memory access takes 500 cycles ?



Caches and locality

Text book computer engineering: (e.g. Hennessy & Patterson)

• Code optimisations should expose spatial data reference locality – Large cacheline, wide buses

• Code optimisations should expose temporal data reference locality – Large cache

Cached CPU

Single 
instruction

Single data item

Page 7Integer

FP

Memory

word

Page 7

Page 15

Page 37

word

whole page

Cache

• Memory systems are granular

• If you only access 1 byte of contiguous
data, you still pay to transfer 128Bytes

• Big gain from spatial locality of
reference: use everything that gets
transfered!

You don’t buy a multipack if you only want one item!



CPU SIMD model

SIMD brings a new level of restrictivness that is much harder to hit

• Code optimisations should expose spatial operation locality

• Obvious applications in array and matrix processing but hard in general

SIMD CPU

Single 
instruction

W2

Integer

FP

Memory

word

Page 7

W1 W3

word word word

P7, W0

P7, W0

• Must arrange to have same operation applied to consecutive elements of data

• Only then can granular memory transfers and SIMD execution be exploited
• typically drop to “intrinsic functions” or assembly for CPU’s
• change data layout from the standard language defined array ordering
• we are fighting against the languages!



GPU SIMT model
SIMT — coalesced reads

Single 
instruction

Multiple data 

Integer

FP

Memory

Page 1 Page 2 Page 3 Page 4

Cache

CPU GPU

Integer scalar vector
Floating vector vector

Caching yes yes

Contiguous vec loads default dynamically coalesced
Random vec loads gather/scatter default

Thread divergence write masks hardware managed

• Any grouping of data references works

• For performance must arrange to have same operation applied to consecutive elements of
data

• Coalesced accesses detected at runtime by GPU’s
• granular memory transfers and SIMD execution can then be exploited
• Performance loss if threads diverge in address or control flow

• Vectorisable loop ordering and data layout identical between GPU and CPU

contiguous block memory accesses with same operations performed on adjacent words .

Chip Clock blocks per bock SP madd issue SP madd peak
GP100 1.4 GHz 56 SM’s 2 IB/RF 32 112×2 3584 10.5 TF/s
KNL 1.4 GHz 36 L2 tiles 2 cores 32 72×2 2304 6.4 TF/s

Broadwell 2.5 18 cores 16 18×2 576 1.4 TF/s
Skylake ? 28 cores 32 28×2 1792 4.4 TF/s (EST)



Intel Knight’s Landing Deep Dive

Intel HotChips Talk Hyperlink

• 2016 NERSC (Cori-II), Argonne (Theta) with Cray Aries

• 2016 Cineca (Marconi), Tsukuba/Tokyo (Oakforest-PACS) with Omnipath

• 2018/19 Aurora (Knights Hill, Omnipath 2.0)

Knights Landing Overview 

Chip: 36 Tiles interconnected by 2D Mesh 
Tile: 2 Cores + 2 VPU/core + 1 MB L2 
 
Memory: MCDRAM: 16 GB on-package; High BW 
                  DDR4: 6 channels @ 2400  up to 384GB  
IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset 
Node: 1-Socket only 
Fabric: Omni-Path on-package (not shown) 
 
Vector Peak Perf: 3+TF DP and 6+TF SP Flops 
Scalar Perf: ~3x over Knights Corner 
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ 

TILE 

4 

2 VPU 

Core 

2 VPU 

Core 

 
1MB 
L2 

CHA 

Package 

Source Intel:  All products, computer systems, dates and figures specified are preliminary based on current expectations, and 
are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change 
without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth 
numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been 
estimated based on internal Intel analysis and are provided for informational purposes only.  Any difference in system 
hardware or software design or configuration may affect actual performance.  Omni-path not shown 

EDC EDC PCIe 
Gen 3

EDC EDC

Tile

DDR MC DDR MC

EDC EDC misc EDC EDC

36 Tiles 
connected by 

2D Mesh 
Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
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4
 

C
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N
N
E
L
S
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D
D
R
4
 

C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2 x16
1 x4

X4 
DMI

http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf


Intel Knight’s Landing Deep Dive

Core & VPU 
� Out-of-order core w/ 4 SMT threads 
� VPU tightly integrated with core pipeline 

 
� 2-wide Decode/Rename/Retire  
� ROB-based renaming. 72-entry ROB & Rename 

Buffers 
� Up to 6-wide at execution 
� Int and FP RS OoO.  
� MEM RS inorder with OoO completion. Recycle Buffer 

holds memory ops waiting for completion. 
� Int and Mem RS hold source data. FP RS does  not. 

 
� 2x 64B Load & 1 64B Store ports in Dcache.  
� 1st level uTLB: 64 entries 
� 2nd level dTLB: 256 4K, 128 2M, 16 1G pages 

 
� L1 Prefetcher (IPP) and L2 Prefetcher.  
� 46/48 PA/VA bits  
� Fast unaligned and cache-line split support.  
� Fast Gather/Scatter support 

7 

Icache 
(32KB 8-way) 

Fetch & 
Decode 

Bpred 

Allocate/ 
Rename 

Retire 

FP RS 
(20) 

FP RS 
(20) 

Vector 
ALUS 

Vector 
ALUs 

MEM 
RS(12) 

FP Rename Buffers 

Integer Rename Buffer 

Integer RF 

Int RS 
(12) 

Int RS 
(12) 

ALU Dcache 
(32KB 8-way) 

TLBs 

FP RF 

ALU 

Recycle 
Buffer 

Legacy 

iTLB 



Intel Knight’s Landing Deep Dive

KNL ISA 
E5-2600 
(SNB1) 

SSE* 

AVX 

E5-2600v3 
(HSW1) 

SSE* 

AVX 

AVX2 

AVX-512CD 

x87/MMX x87/MMX 

KNL 
(Xeon Phi2) 

SSE* 

AVX 

AVX2 

x87/MMX 

AVX-512F 

BMI 

AVX-512ER 

AVX-512PF 

BMI 

TSX 

KNL implements all legacy instructions 
• Legacy binary runs w/o recompilation 
• KNC binary requires recompilation 
 
 
KNL introduces AVX-512 Extensions 
• 512-bit  FP/Integer Vectors 
• 32 registers, & 8 mask registers 
• Gather/Scatter 
 

Conflict Detection: Improves Vectorization 

Prefetch: Gather and Scatter Prefetch 

Exponential and Reciprocal Instructions 

LE
G

AC
Y 

No TSX. Under separate 
CPUID bit 

1. Previous Code name Intel® Xeon® processors 
2. Xeon Phi = Intel® Xeon Phi™ processor 



Nvidia Pascal Deep Dive

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  13 

 

Figure 8. Pascal GP100 SM Unit 

Designed for High-Performance Double Precision 

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical 
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly 
improve the delivered performance for these use cases.  

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32 
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single 
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration, 
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100 
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support 
for the fused multiply‐add (FMA) operation and full speed support for denormalized values. 
 

� Note:  Kepler GK110 had a 3:1 ratio of SP units to DP units. 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  10 

GP100 GPU Hardware Architecture In-Depth 

GP100 was built to be the highest performing parallel computing processor in the world to address the 
needs of the GPU accelerated computing markets serviced by our Tesla P100 accelerator platform. Like 
previous Tesla-class GPUs, GP100 is composed of an array of Graphics Processing Clusters (GPCs), Texture 
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and memory controllers. A full GP100 
consists of six GPCs, 60 Pascal SMs, 30 TPCs (each including two SMs), and eight 512-bit memory 
controllers (4096 bits total). 

Each GPC inside GP100 has ten SMs. Each SM has 64 CUDA Cores and four texture units. With 60 SMs, 
GP100 has a total of 3840 single precision CUDA Cores and 240 texture units. Each memory controller is 
attached to 512 KB of L2 cache, and each HBM2 DRAM stack is controlled by a pair of memory 
controllers. The full GPU includes a total of 4096 KB of L2 cache.  

Figure 7 shows a full GP100 GPU with 60 SM units (different products can use different configurations of 
GP100). The Tesla P100 accelerator uses 56 SM units. 

 

Figure 7. Pascal GP100 Full GPU with 60 SM Units 

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  11 

Exceptional Performance and Power Efficiency 
Delivering higher performance and improving energy efficiency are two key goals for new GPU 
architectures. A number of changes to the SM in the Maxwell architecture improved its efficiency 
compared to Kepler. Pascal has built on this and incorporates additional improvements that allow us to 
increase performance per watt even further over Maxwell. While TSMC’s 16-nm FinFET manufacturing 
process plays an important role, many GPU architectural modifications were also implemented to further 
reduce power consumption while maintaining high performance.  

Table 1. Tesla P100 Compared to Prior Generation Tesla products 

Tesla Products Tesla K40 Tesla M40 Tesla P100 

GPU  GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) 

SMs 15 24 56 

TPCs 15 24 28 

FP32 CUDA Cores / SM 192 128 64 

FP32 CUDA Cores / GPU 2880 3072 3584 

FP64 CUDA Cores / SM 64 4 32 

FP64 CUDA Cores / GPU 960 96 1792 

Base Clock 745 MHz 948 MHz 1328 MHz 

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 

Peak FP32 GFLOPs1 5040 6840 10600 

Peak FP64 GFLOPs1 1680 210 5300 

Texture Units 240 192 224 

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 

Memory Size Up to 12 GB Up to 24 GB 16 GB 

L2 Cache Size 1536 KB 3072 KB 4096 KB 

Register File Size / SM 256 KB 256 KB 256 KB 

Register File Size / GPU 3840 KB 6144 KB 14336 KB 

TDP 235 Watts 250 Watts 300 Watts 

Transistors 7.1 billion 8 billion 15.3 billion 

GPU Die Size 551 mm² 601 mm² 610 mm² 

Manufacturing Process 28-nm 28-nm 16-nm FinFET 

1  The GFLOPS in this chart are based on GPU Boost Clocks. 



Nvidia Pascal Deep Dive

• Pascal uses virtual memory pages “Page Migration Engine”

• Programming model simplification, less reliant on exposed offload

• Pulls pages from CPU vm system on demand, locks out CPU
• With O/S support distinction between host and device memory eroded
• Call special allocator to access from both host and device

• NVLink provides 160 GB/s bidi interconnect for up to 8 GPU’s (DGX-1)

• Some tech press sites (trustable?) say next generation Volta will become cache coherent

GP100 Pascal Whitepaper Unified Memory 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  28 

Finally, on supporting operating system platforms, memory allocated with the default OS allocator (for 
example, malloc or new) can be accessed from both GPU code and CPU code using the same pointer (see 
Figure 22). On these systems, Unified Memory can be the default: there is no need to use a special 
allocator or for the creation of a special managed memory pool. Moreover, GP100's large virtual address 
space and page faulting capability enable applications to access the entire system virtual memory. This 
means that applications are permitted to oversubscribe the memory system: in other words they can 
allocate, access, and share arrays larger than the total physical capacity of the system, enabling out-of-
core processing of very large datasets.  

Certain operating system modifications are required to enable Unified Memory with the system allocator. 
NVIDIA is collaborating with Red Hat and working within the Linux community to enable this powerful 
functionality. 

 

Figure 22. With Operating System Support, Pascal is Capable of Supporting Unified 
Memory with the Default System Allocator.  
(Here, malloc is all that is needed to allocate memory accessible from any CPU or GPU in the 
system.) 

Benefits of Unified Memory 

There are two main ways that programmers benefit from Unified Memory. 

x Simpler programming and memory model. Unified Memory lowers the bar of entry to parallel 
programming on GPUs by making explicit device memory management an optimization, rather than a 
requirement. Unified Memory lets programmers focus on developing parallel code without getting 
bogged down in the details of allocating and copying device memory. This makes it easier to learn to 
program GPUs and simpler to port existing code to the GPU.  

x But it is not just for beginners; Unified Memory also makes complex data structures and C++ classes 
much easier to use on the GPU. On systems that support Unified Memory with the default system 
allocator, any hierarchical or nested data structure can automatically be accessed from any processor 
in the system. With GP100, applications can operate out-of-core on data sets that are larger than the 
total memory size of the system. 

GP100 Pascal Whitepaper NVLink High Speed Interconnect 
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NVLink Configurations 
Numerous topologies are possible, and different configurations can be optimized for different 
applications. In this section, we discuss the following NVLink configurations: 

x GPU-to-GPU NVLink Connectivity 
x CPU-to-GPU NVLink Connectivity 

GPU-to-GPU NVLink Connectivity 
Figure 14 shows an 8-GPU Hybrid Cube Mesh that includes two fully NVLink-connected quads of GPUs, 
with NVLink connections between the quads, and GPUs within each quad connected to their respective 
CPUs directly through PCIe. By using separate NVLink connections to span the gap between the two 
quads, it relieves pressure on the PCIe uplink to each CPU, and likewise avoids routing transfers through 
system memory and over an inter-CPU link.  
 

 

Figure 14. Eight GPU Hybrid Cube Mesh Architecture 

Note that each half of the 8-GPU Hybrid Cube Mesh can operate as a shared memory multiprocessor, 
while the remote nodes can also share memory with DMA through peers. With all GPU-to-GPU traffic 
flowing over NVLINK, PCIe is now entirely available for either connection to a NIC (not shown) or for 
accessing system memory traffic. This configuration will be commonly recommended for general-purpose 
Deep Learning applications and is implemented in NVIDIA’s new DGX-1 server. 



Fine grid Dirac matrix bandwidth analysis

• L4 local volume; 8/16 point stencil

• Multi-RHS and DWF take Ls = Nrhs.
Suppresses gauge field overhead;

• Cache reuse ×Nstencil on Fermion possible

• Accesses per 4d site of result

• Fermion: Nstencil× (Ns ∈ {1,4})× (Nc = 3)× (Nrhs ∈ {1,16}) complex
• Gauge: 2Nd ×N2

c complex

• Flops

• Nstencil×Nhs SU(3) MatVec: 66×Nhs×Nstencil (+ spin projection)

Action Fermion Vol Surface Ns Nhs Nrhs Flops Bytes Bytes/Flops

HISQ L4 3×8×L3 1 1 1 1146 1560 1.36

Wilson L4 8×L3 4 2 1 1320 1440 1.09

DWF L4 ×N 8×L3 4 2 16 Nrhs ×1320 Nrhs ×864 0.65

Wilson-RHS L4 8×L3 4 2 16 Nrhs ×1320 Nrhs ×864 0.65

HISQ-RHS L4 3×8×L3 1 1 16 Nrhs ×1146 Nrhs ×408 0.36

• ∼ 1
L of data references come from off node

Scaling fine operator requires interconnect bandwidth

Bnetwork ∼
Bmemory

L
×R

where R is the reuse factor obtained for the stencil in caches



Intel Knight’s Landing Performance Results



Vectorisation strategy

SIMD interleave

= x

Reduction of vector sum
is bottleneck for small N

Vector = Matrix x Vector

Many vectors = many matrices  x many vectors

No reduction or SIMD lane

crossing operations.

• SIMD most efficient for independent but identical work

• Apply N small dense matrix-vector multiplies in parallel



Back to the Future

Q) How do we find copious independent but identical work?

A) Remember that SIMD was NOT hard in the 1980’s (CM, APE...)

Back to the future
• The SIMD Connection Machines in the ‘80 had similar problems

• Solution: map the vector units to virtual nodes (cmfortran and HPFortran)

Virtual nodes 
layout

··I· ·:i

i -  an P

..:.:··3-i -;·I:; ,
.----- :i- · - :· ·- 

: ?  '  i::

Connection Machine Model CM-2 and DataVault System

The Connection Machine Model CM-2 uses thousands of processors operating in parallel to achieve

peak processing speeds of above 10 gigaflops. The DataVault mass storage system stores up to

60 gigabytes of data.

vii

• Resurrect Jurassic data parallel programming techniques: cmfortran, HPF

• Address SIMD, OpenMP, MPI with single data parallel interface

• Map arrays to virtual nodes with user controlled layout primitives
• Conformable array operations proceed data parallel with 100% SIMD efficiency
• CSHIFT primitives handle communications



GRID data parallel template library

Ordering Layout Vectorisation Data Reuse

Microprocessor Array-of-Structs (AoS) Hard Maximised

Vector Struct-of-Array (SoA) Easy Minimised

Bagel Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

• www.github.com/paboyle/Grid

• PAB, Cossu, Portelli, Yamaguchi: arXiv:1512.03487; Poster 184

• Automatically transform layout of arrays of mathematical objects using vSIMD template parameter

• Conformable array operations are data parallel on the same Grid layout

vRealF, vRealD, vComplexF, vComplexD

template<class vtype> class iScalar

{

vtype _internal;

};

template<class vtype,int N> class iVector

{

vtype _internal[N];

};

template<class vtype,int N> class iMatrix

{

vtype _internal[N][N];

};

typedef Lattice<iMatrix<vComplexD> > LatticeColourMatrix;

typedef iMatrix<ComplexD> ColourMatrix;

• Internal type can be SIMD vectors or scalars

LatticeColourMatrix A(Grid);

LatticeColourMatrix B(Grid);

LatticeColourMatrix C(Grid);

LatticeColourMatrix dC_dy(Grid);

C = A*B;

const int Ydim = 1;

dC_dy = 0.5*Cshift(C,Ydim, 1 )

- 0.5*Cshift(C,Ydim,-1 );

• High-level data parallel code gets 65% of peak on AVX2

• Single data parallelism model targets BOTH SIMD and
threads efficiently.



Grid performance

Architecture Cores GF/s (Ls x Dw) peak
Intel Knight’s Landing 7250 68 770 6100

Intel Knight’s Corner 60 270 2400
Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400

Intel Ivybridgex2 24 270 920
AMD Interlagosx4 32 (16) 80 628

��

����

�����

�����

�����

�����

����� ������ ������� ������ ������ ������

�����������������
�����������������

��������

Knight’s Landing memory system profile
(GB/s vs footprint bytes/core)

Grid: A next generation C++ library for data parallel QCD
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Figure 4: We compare the performance of Grid (red) on SU(3)⇥SU(3) matrix multiplication to peak (blue),
the limit imposed by memory bandwidth (purple), and to that of the QDP++ code system (green).
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Figure 5: We compare the SU(3)⇥SU(3) performance (Gflop/s) versus footprint (bytes) under AVX-1
instructions of a slightly slower clocked quad-core Haswell (Crystalwell) to a quad-core Ivybridge. The
effect of 128MB integrated on-package eDRAM cache is clearly visible.

on-package high bandwidth memory while keeping the available peak performance roughly fixed,
and anticipate the change in performance profile we might expect to see from the Knights Landing
chip which will introduce up to 16GB of very high bandwidth 3D memory on package.

Figure 6 demonstrates good performance under both later versions of GCC, and ICC proving
that the performance, although varying a little from compiler to compiler is portably strong es-
pecially when Nc loops are hand unrolled. We compare different generations of Intel and AMD
architectures in Table 4

4. Status, conclusions and outlook

Grid is a new and growing physics system and is not yet mature. The code remains for now a
work in progress, and the development is being performed on a public repository:
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SU3 x SU3 example



Grid multi-RHS Wilson Dslash and DWF
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LsVec knl (66c)
LsVecEO knl (66c)

xVec knl (66c)
xVecEO knl (66c) 

LsVec dual broadwell (36c)
LsVecEO dual broadwell (36c)

xVec dual broadwell (36c)
xVecEO dual broadwell (36c)

• Grid single node, single precision
performance for multiRHS Wilson term

• Knight’s Landing 7250, 68 core

• Used 66 cores - a few empty cores
usually faster

• One KNL substantially faster than two
Broadwell’s (18+18) out of cache

• 1 thread per core fastest after writing in
assembler (not intrinsics)

• Macro system and mixed C++/asm
minimises pain

• Hand allocation of registers evades
stack eviction, cache more
deterministic

• Hand prefetch to L2 and to L1
• 8.2.2.2 cache blocking
• Less reuse than I hoped for

• Single core instructions-per-cycle is 1.7
(85% of theoretical)

• Multi-core L1 hit rate is 99%
(perfect SFW prefetching)

• Multi-core MCDRAM bandwidth 97%
(370GB/s)

• Provably unimprovable ?



QPhiX performance on KNL and broadwell

• “Optimizing Dirac Wilson Operator and linear solvers for Intel(R) KNL”
B. Joo - Jefferson Lab, Newport News, VA, USA
D. D. Kalamkar - Intel Parallel Computing Labs, India T. Kurth - NERSC
K. Vaidyanathan - Intel Parallel Computing Labs, India
A. Walden - Old Dominion University, Norfolk, VA, USA

Wilson Dslash

SOA 4

DDR

MCDRAM

SOA 8

Haswell Dual Socket

DDR

MCDRAM

+ Sfw + Hw Prefetch

+ Sfw - Hw Prefetch

SOA 16

DDR

MCDRAM

GFLOPS

0 150 300 450 600

1 threads
2 threads
4 threads

• Single precision

• first results I have seen on multi-node performance with Omnipath



Multi RHS single node HISQ

Patrick Steinbrecher, PhD student, Bielefeld & BNL
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fp32, ECC

Knights Landing 7250

• Single precision, single node performance library for valence measurement

• Particular emphasis on use in disconnected diagrams at finite temperature

• Adopted similar wrapping of vector classes to Grid approach

• Patrick has done a really good job



MILC on KNL

• MILC multi-mass CG (Ruizi Li, Thursday@15:40)

• Double precision

• Also: Ishikawa-san KNC results
Thursday@15:20



Nvidia Pascal Performance Results



QUDA performance

• Algorithms and machines, Thu @ 14:20, Wagner, Thu @ 14:40, Clark

Pascal results and code by Kate Clark, Nvidia
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Multi RHS Staggered
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Scaling across DGX-1 8 gpu system



Programming more generally for GPU

• Offload to GPU poses difficulty to code maintainance and performance portability

• Big investment in QDP-JIT for example
• PoS LATTICE2011 50 (Winter)

PoS LATTICE2012 (2012) 185 (Winter)
• “operator =” prints simple GPU code, compiles, dynamic links, caches

• PB, Meifeng Lin reduced Grid ET engine to 200 line example

• Remove use of C++ libraries in assembling “Expression objects”
• Remove host references in expression objects

• Can offload with CUDA kernel call to evaluate expression using “compile time compilation”

• Will become even easier with unified memory model

initialised arrays
v1={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
v2={2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
v3 = v1+v2 = {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
v3 = v1+v2+v1*v2 = {5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}

• James Osborn QEX based on “NIM” language; controllable “nim to C” mapping in principle
enables GPU translation
Algorithms and Machines, Thursday@14:00



Reminder of BG/Q scalability
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  Edinburgh

• RBC-UKQCD simulation programme has regularly sustained over 1 PF/s on MIRA



Interconnect

Bnetwork ∼
Bmemory

L
×R

• Determine reuse factor via Bnetwork = Pdwf ∗0.65/L

• This is the reception bandwidth, and double this
required bidirectional

• Integration of 2x100 Gbit/s network ports on KNL
package significant

• Integration of Omnipath-2 on KNH is significant

• Results from Edison, Cori Phase-1, and by Silicon
Graphics

KNL with Omni-Path™  
Omni-Path™ Fabric integrated on package 
 
First product with integrated fabric 
 
Connected to KNL die via 2 x16 PCIe* ports 
Output: 2 Omni-Path ports  

� 25 GB/s/port (bi-dir) 
 

Benefits  
� Lower cost, latency and power 
� Higher density and bandwidth 
� Higher scalability 
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KNL 

16 GB 
MCDRAM 

Omni 
Path 

x16 PCIe* 

DDR 4 

Omni 
Path 
ports 
100 
Gb/s/
port 

X4 PCIe 

Package 

*On package connect with PCIe semantics, with MCP optimizations for physical layer 

Nodes Memory (GB/s) Bidi network requirement (GB/s)
L=10 L=16 L=32 L=64

2xBroadwell 100 100 16 8
KNL 400 100 64 32
P100 700 200 128 64

DGX-1 5600 - 975 487 243

Node Network Delivered Require

KNL Cray Aries 11 64
KNL Single EDR 23 64
KNL Dual EDR 45 64
KNL Dual Omnipath 50 peak 64

• Summit and Sierra are unlikely to scale beyond one node

• Cori and Theta could really have done with dual rail EDR or Omnipath

• Aurora likely scalable

• Systems useful for ensemble valence analysis, DD preconditioner in multigrid

• Dual 100GBit/s KNL likely scalable on fine operator



Silicon Graphics ICE-X network

• Can embed 2n QCD torus inside hypercube
so that nearest neigbour comms travels
single hop (PAB, SGI)

• Gray counter encode node coordinates;
alternative to large torus machines

• Dual rail fat tree would also work, greater
switch/cable cost, limit to system size

• Perfect weak scaling obtained; results on
256 nodes

• Results from dual Broadwell cluster,
Mellanox EDR (single/dual)

• Drop in performance from out of cache is
expected to be better on KNL



Algorithms

I have chosen to focus on two aspects that I feel are most fundamental to continued progress

• Multi-scale fermion solvers

• Multi-scale integration

Not covered in detail (but also fundamental):

• Topological sampling

• Covered by Michael Endres Tuesday @ 9:45
• Metadynamics, Sanfilippo Tuesday @ 18:10

• Caution on both: Symptomatic relief is not necessarily a cure
• Want solutions that address all forms of critical slowing down in an exact MCMC run far

enough to converge on the fixed point of the process

• Approaches to free energy, density of states and derived observables, reviewed by Langfeld

• Applications of Jarzynski’s relation in lattice gauge theories; Nada Tuesday@17:10
• Computing the density of states with the global HMC;Pellegrini Tuesday@17:30
• Overcoming strong metastabilities with the LLR method;Lucini Tuesday@17:50



Multi-scale fermion solvers

• Index theorem: expect a set of topological modes protected only by quark mass

• Deflate these modes: big reduction in condition number of Dirac operator

• Cost reduced to O(V ): concurrent works

• arXiv:0706.2298 Luscher
• arXiv:0707.4018 Brower/Clark/Brannick/Osborn/Rebbi

• Solved problem in valence sector for

• Wilson
arXiv:0706.2298 (Luscher)
arXiv:0707.4018, arXiv:0710.3612, arXiv:0811.4331 (BCBOR)

• Clover fermions
arXiv:1011.2775 Osborn, Babich, Brannick, Brower, Clark, Cohen, Rebbi,
arXiv:1202.2462, arXiv:1303.1377, arXiv:1307.6101 Frommer, Kahl, Kreig, Leder,
Rothman

• Gauge evolution: coarsening basis must recomputed after each timestep, reversibility requires
higher accuracy

• arXiv:0710.5417 Luscher
• arXiv:1307.6101 Frommer, Kahl, Kreig, Leder, Rothman

• Nested solver approaches for overlap

• arXiv:1410.7170 (Brannick, Frommer, Kahl, Rottman, Strebel

• 5d domain wall approaches using the normal equations

• arXiv:1205.2933 Cohen
• arXiv:1402.2585 PAB



Multi-scale fermion solvers

• Capture IR dynamics in a subspace Mφi ≈ 0

• Local coherence ⇒ chop into blocks φb
i

• Schur decompose the matrix into a subspace and the orthogonal complement

M = UDL =

[
Ms̄ s̄ Ms̄s

Mss̄ Mss

]
=

[
1 Ms̄sM

−1
ss

0 1

][
S 0
0 Mss

][
1 0

M−1
ss Mss̄ 1

]

• Represent the matrix M exactly on this IR subspace by computing its matrix elements
little Dirac operator or coarse grid matrix

Aab
jk = 〈φ a

j |M|φb
k 〉 ; (MSS ) = Aab

ij |φ a
i 〉〈φb

j |. (1)

• Inversion via Krylov methods; use in a preconditioner accelerating IR modes
Smoother (e.g. MSAP ) used as preconditioner to address UV modes.

• Double precision outer Krylov solver mops up the rest in a few iterations



Staggered multigrid

Weinberg, Brower, Clark, Strelchenko, Algorithms and Machines, Thursday@15:00.

History

MG for the Wilson-Clover operator has a rich history:
[Phys.Rev.Lett. 105 (2010): R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteu�el,

S.F. McCormick, J.C. Osborn, C. Rebbi]
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mass BiCGstab GCR-MG BiCGstab GCR-MG

-0.400 251 15 980 376

-0.405 372 16 980 372

-0.410 510 17 980 353

-0.415 866 18 980 314

-0.420 3103 19 980 280

Figure : QUDA-MG update, February 2016
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• Coarsen indefinite /D directly

• Project low subspace into definite chirality basis prior to coarsening



5D chiral fermion multigrid
Poster 184: Yamaguchi, PAB

• Coarsen indefinite γ5 /D directly

• Project low subspace into definite chirality basis prior to coarsening 1

• Use H = γ5R5Ddwf Hermitian operator and conjugate residual as basis

• Also works for continued fraction overlap
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Figure 8: Typical spectra of the Wilson fermion in QCD on a 44 lattice at β = 5.4 (left)
and β = 5.6 (right). We recognize the transition to the regime where the overlap projection
is statistically safe (for 1.5 <∼ µ <∼ 2).

4 Approximate Ginsparg-Wilson Fermions for QCD

Our approach to construct a short-ranged approximate GW fermion for QCD is
to stay with the couplings of the truncated perfect free fermion and gauge it by
hand, using just very few new parameters to go beyond the “minimal gauging”.
This concept was successful in d = 2, and in d = 4 we already know that the
free HF is doing well in scaling, approximating the GWR and approximating
rotational invariance (the latter is also checked at strong coupling), see Sec.
1.3. Alternatively, one may try to minimize the GWR violation directly within
a limited set of parameters 17,30, or undertake a new effort to parameterize an
(approximate) classically perfect action 31.

We are confident that our free HF couplings already provide a good scaling,
so the issue is to find a suitable gauging in the sense that the GWR violation
is small. As our criterion, we compute the spectra on small lattices and try
to arrange for them to be close to a GW unit circle (for typical quenched
configurations at β = 6).

As we see from Fig. 9, the minimally gauged HF suffers from mass renor-
malization almost as much as the Wilson fermion. On the other hand, the
right arc is excellent (see Fig. 7), but less important. Our first step beyond
minimal gauging is the use of fat links: each link in a given configurations is
substituted as

link → (1 − α) link +
α

6
[

∑
staples ] (α ∈ RI ). (7)
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• Krylov polynomial approximates P(z)→ 1
z over region in complex plane encircling the pole at

zero

• impossible to reproduce phase winding over this region with any polynomial
∮

z−1dz = 2π i 6=
∮

P(z)dz = 0

• Phase response is the problem: make the system real indefinite using γ5

• These operators are nearest neighbour and preserve sparsity in a coarse space.

• Chebyshev filters for subspace generation

1trick borrowed from Clark



Multilevel integration for (quenched) fermionic observables
• Domain decomposition and multilevel integration

• Stefan Schaefer, Macro Ce, Algorithms and Machines, Wednesday@09:00,09:20.

• Presently quenched onlyGeneral idea

Two-Level algorithm

O(x)
O'(y)

L            B            R

Level-0

N0 realizations of boundary field B

Level-1

For each of the N0 B fields: N1 gauge fields in L and R

! Cost / N0 ⇥ N1

Construction of N0 ⇥ N2
1 configurations.

In best case: signal-to-noise ratio /
p

N0 ⇥ N1

More slices: get effectively NNslice
1 configs

see also: Meyer’02, Giusti, Della Morte’08,’10
5 / 17

Approximation

Introduce thick time slices

And drop contributions which are more than one time slice away by
introducing Dirichelt boundary conditions

Iterate .....

D�1(x, y) ⇡ (�1)m�l
h m+1Y

i=l

D�1
⌦⇤

i
D⇤i,i�1

i
(x, ·) D�1

⌦m+2
(·, y)

15 / 17

Summary: disconnected
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short-distance: error dominated by the first correction

long-distance: error dominated by the factorized contribution

) Factorization and multilevel integration works

error decreases exponentially

maintain signal for additional 1 fm
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Other algorithmic work

Incomplete list:

• Twisted mass multigrid
Simone Bacchio, Algorithms and Machines, Wednesday@10:00.

• DD-α-AMG solver library:
Matthais Rottmann Algorithms and Machines, Wednesday@09:40.

www.github.com/DDalphaAMG

• Implementation of TWQCD’s Exact one flavour algorithm for DWF (Murphy
Wednesday@10:20)



Multigrid and machines

Machine problems with multigrid

• Amdahl:

• Coarse space becomes difficult to fine grain parallelise
• Sublattice site parallelism (Clark)
• Inexact deflation (Luscher), HDCG: dense matrix deflation with many (eigen)vectors at

coarsest levels

• Communications:

• Is domain decomposition in multigrid smoothers the best option in future?
• Smoothers should minimise use of network and maximise cache reuse
• Preserve information selectively on domain boundaries when compute � communication
• HDCG:

polynomial smoother & reduce precision to 7 mantissa bits in smoother
same flop count in both cases
preserves the most significant bits of information flow
whereas replacing with DD solve (flush to zero) suffers reduced convergence rate

32

less favourable communication performance we have investigated truncation of the floating point

mantissa to only 6 bits, by truncating each single precision word to 16 bits.

Since BlueGene/Q has only IEEE floating point SIMD operations this requires moving the data

through the cache between floating point and integer register files and applying a mask, rotate,

or combine step; compression to 8bit is not cost effective since one is reduced to byte operations.

However, the decision of how best to invest years of effort and to spend millions of dollars in future

depends on definitively answering this question. This reduces the bytes per word to only two.

On architectures such Xeon Phi which possess both floating point and integer SIMD operations

truncation to 8 bit is feasible using a sequence of SIMD operations: maxabs, divide, and convert

to 8bit signed integer instructions. In this way a 24 element four spinor could be stored as a 16bit

half precision prefactor and 24 8 bit signed integers. This can potentially save a factor of eight in

communication over a double precision implementation [49].

Table XVI shows that this reduction in communication bandwidth is acheived with no algo-

rithmic penalty in iteration count. As a consequence this appears to be an attractive competitive

approach to domain decomposition; rather than suppressing communication entirely, only the most

numerically significant parts of the communication are preserved.

Precision of inner communication Exponent Mantissa Outer iteration count

64 bit 11 bit 52 bit 168

32 bit 8 bit 23 bit 168

16 bit 8 bit 7 bit 168

TABLE XVI: We compare applying the MIRS preconditioner with different levels of numerical precision.

The top two rows compare application with a uniform 64 bit and 32 bit precision of all elements of data.

The final row retains 32 bit precision for all elements of data except for data communicated between nodes.

The communication buffers are truncated to retain only seven mantissa bits, and no detrimental algorithmic

impact is seen. Compared to the 64 bit case a four fold reduction in communication bandwidth has been

achieved, however in architectures where conversion to 8bit integer can be performed in SIMD instructions

we can expect successful compression by a factor near eight without loss of algorithmic efficiency.

Of course, the cache locality benefit of domain decomposition is not preserved here. However,

for 5d chiral Fermions, we obtain Ls cache reuse of gauge fields and 2Nd reuse of Fermion fields

in the Dirac operator and there is already a high level of cache reuse in the matrix multiply.



Summary...

• Tremendous growth in computer power from many core CPU’s and GPU’s

• Knights Landing: 0.5-1TF/s single node SP
• Nvidia Pascal: 1-2 TF/s single node SP

• Interconnects are not keeping pace

• Fine grid operator requires at least 2:1 ratio of EDR/OPA to compute chips

• Multigrid solver algorithms solved critical slowing down in valence sector for Wilson/Clover

• Multigrid algorithms appearing for other actions (Staggered, DWF, Twisted Mass)
• Successful application in HMC exists for Wilson/Clover, but not yet widespread

• Multilevel integration algorithms interesting

• Algorithms that maintain ergodicity are a big challenge to using this power usefully
(Endres talk)

• Use of fp64/fp32/fp16 arithmetic in preconditioners or variance reduction is not yet fully
explored



And finally...

• The end of Moore scaling has long been anticipated.

• But 3rd space dimension is unused: increase transistor density, reduce wire delays

• Unlikely to give more than several orders of magnitude but very important
changes

• Engineering barriers exist but easier than many problems EE has already solved

• We are now seeing first steps in this direction

Suburban sprawl −→ Metropolis


