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1. Introduction 
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History of lattice chiral symmetry  

1981 Nielsen-Ninomiya’s no go theorem 
 

1992 Domain-wall fermion (Kaplan) 
1997 Fixed point action (Hasenfratz) 
1998 Overlap fermion (Neuberger) 
 

1999-2001 Luescher’s proof for existence of    
          U(1) chiral gauge invariant regularization 
         Kikukawa-Nakayama: SU(2)xU(1) also O.K. 
 

2015 Grabowska & Kaplan : manifestly gauge 
invariant construction of chiral gauge theory 3 



What’s new in Grabowska-Kaplan, 
PRL 116 (2016) no.21 211602 ? 

[Grabowska Theory Wed, Kaplan, plenary Sat] 
Before GK (Neuberger, Luescher, Kikukawa, Suzuki…): 
1.  Break gauge sym. explicitly, 
2.  Find a counter-term if anomaly free, 
3.  (Mainly) studied w/ 4D overlap fermions. 

Grabowska & Kaplan PRL 116 (2016) no.21 211602 : 
1.  Keep gauge sym. explicitly, 
2.  If not anomaly free, no 4D local action, 
3.  5D construction is essential. 
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The key is gradient flow (again). 

They put  
 
 
 
 
 

     Gauge d.o.f. do not flow ! 
     Links at different t have the 
     same 4D gauge invariance. 
     

Uµ(x, t) =

�
flow time t configuration (µ = 1, 2, 3, 4)

1 (µ = 5)

�(t) =

�
+1 (t � 0)
�1 (t < 0)

.

SDW =

�
d4xdt�̄(D5D

Wilson � ��(t))�

Figure by Kaplan	 5 



Extra-dimension is essential. 

They successfully reproduced a picture: 
  gauge anomaly = gauge current missing     
  in extra dim, [Callan & Harvey 1985] 
keeping total gauge invariance in 5D. 

4D surface	

x5 Absorbed by 5D 
Chern-Simons term.	
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How about global anomaly ? 

Global anomaly  [Witten 1982]: 
  Gauge anomaly SU(2) = mod 2 index of 5D      
  Dirac operator w/ 5-th direction  

     = gauge non-invariant path 

4D surface	

x5

Mod 2 instanton 
flips the sign of 
partition function.	

Aµ(xµ, x5) = (1 � x5)Aµ(x) + x5A
g
µ(xµ)
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Extra-dim. is essential  
for global anomaly, too. 

Witten’s claim at Strings 2015: 
We need “extension” of global anomaly. 
 

Not only for “mapping torus”: 
 
but also for ANY D+1 manifold with D-dim. 
boundary Weyl fermions, if the determinant 
has a phase 
then the theory has a global anomaly. 
 

Anomaly cannot be understood within 4-dim !    

Aµ(xµ, x5) = (1 � x5)Aµ(x) + x5A
g
µ(xµ)

exp(i��) �= 1,
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We need extra dimension(s) ! 

We want combine them. 
1. Grabowska-Kaplan’s 5D  
 
 
2. Witten’s 5D 
 
 
But how ? 
 

4D 
boundary	

4D 
boundary	

x5

x5

Gauge inv. gradient 
flow → cannot 
detect global 
anomaly.	

Gauge non-invariant 
flow → cannot keep 
gauge symmetry.	
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x5 x6We (4dim) are here.	

Our proposal = 6D  
with 2 different domain-walls 
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GK domain-wall contains Stora-
Zumino anomaly descent equations 

4D	
perturba+ve	
anomaly	

5D	Chern-
Simons	1	

5D	Chern-
Simons	2	

6DAxial	U(1)	
anomaly	

�
d5x(CS) =

�
d6xF � F � F

�g(phase) =

�

x5<0
d5x�g(CS)

[Stora 1983, Zumino 1983,  
Alvarez-Gaume & Ginsparg 
1984,Sumitani 1984]	 11 



We (4dim) are here.	

W domain-wall mediates global 
anomaly inflow. 

4D	global	
anomaly	

5D	mod	2	
index	

6D	mod	2	
index	SU(2) example	

global anomaly

�
�4(SU(2)) = Z2

�
�5(SU(2)) = Z2
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Our 6-dim formulation has 

1. Stora-Zumino anomaly ladder:         
6D U(1)A index → gauge anomaly. 

2. Global anomaly ladder (new finding): 
6D exotic index → global anomaly. 

3. Anomaly free condition = sign-  
    problem free condition in 6D: 
→ If anomaly free, 6D determinant is  
real positive. → Monte Carlo is O.K. ! 
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2. “Parity” and axial 
 U(1) anomalies in 6D 
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Two anomalous symmetries 

1. Axial U(1) symmetry 
 
 

2. Parity’ symmetry  
     (reflection in 5th direction) 

 
 
 
Mass-term is not invariant 

� � ei��7�, �̄ � �̄ei��7

P �2 = �1

P

0
 (x1,···4, x5, x6) = i�5R5 (x1,···4, x5, x6)

= i�5 (x1,···4,�x5, x6)
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Parity anomaly 

Cf. Usual parity (only in even-dim.) :  
 

 mass is allowed since  
 

 (in any dim.) has anomaly: 
  massless fermion action is invariant, 
 but (zero-mode part of) fermion measure    
 is NOT :  

P�(x1, x2,···6) = �1�(x1, �x2,···6)

P 2 = 1

P �

D�̄0P
�DP ��0 = �D�̄0D�0.
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Two mass terms 

      :U(1)A and P’ asymmetric. 
            :odd in P’ but   
         U(1)A invariant. 

⇒ Dirac fermion w/ periodic boundary     

M �̄�
µ�̄(i�6�7R5R6)�

det

�
D6D � M � iµ�6�7R5R6

D6D + M + iµ�6�7R5R6

�
= (�1)P+I

P : U(1)A index (� perturbative anomaly)

I : exotic index (! global anomaly)
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3. Two domain-walls 
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Two domain-walls 

Let’s consider a 6D Dirac fermion 
 
 
 
 

where we assume        
 
        is symmetric under 

 

(* later, gauge field is given by gradient & linear flows)  
 

det

�
D6D + M�(x6) + iµ�(x5)�6�7R5R6

D6D + M + iµ�6�7R5R6

�
�(x) = x/|x|

M > 0, µ > 0
A5 = A6 = 0,

Aµ=1,···4(x)
x5 � �x5,

x6 � �x6

    GK DW       W DW  	
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 Fermion determinant is still real ! 
 
 
 
 determinant has        Hermiticity. 
Indices become non-trivial  

         [Atiyah-Patodi-Singer 1975] 

 

det

�
D6D + M�(x6) + iµ�(x5)�6�7R5R6

D6D + M + iµ�6�7R5R6

�

�5R5

P : APS index through GK domain-wall

I : APS index through W domain-wall

� (�1)P+I

→　Perturbative anomaly in 4D	

→　global anomaly in 4D	 21 



Massless Weyl fermion appears ! 

Dirac equation 
 
has a localized solution at 
as  

(D6D + M�(x6) + iµ�(x5)�6�7R5R6)�(x) = 0

x5 = x6 = 0

x̄ = (x1, x2, x3, x4)

* Opposite chiral mode appears if 	M < 0, µ < 0

�
�̄5 0
0 0

�
�(x̄) = +�(x̄)

 (x) = e

�M |x6|
e

�µ|x5|
�(x̄),

D

4D
�(x̄) = 0,

�6�(x̄) = �(x̄),

i�5�6�7R5R6�(x̄) = �(x̄)
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4. Anomaly ladder through GK 
domain-wall 
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Bulk/edge decomposition 
Simple example without W domain-wall 
 
 
 
 
 
 

where we assume 
Imaginary part →  

µ = 0

M � M2 � 0

det

✓
D

6D
+M✏(x6)

D

6D
+M

◆⇥
/ (�1)

I
⇤

= det

✓
D

6D
+M✏(x6) + iM2�6�7R6

D

6D
+M

◆
[/ exp(i�6D)]

⇥ det

✓
D

6D
+M✏(x6)

D

6D
+M✏(x6) + iM2�6�7R6

◆
[/ exp(i�5D)]

⇡I = �6D + �5D

Bulk 
 
 
edge	
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Atiyah-Patodi-Singer index 

6D bulk → Axial U(1) anomaly 
 
 
 
 

2nd determinant → 5D Dirac fermion 

= �P6D
x6<0 + �CS

CS � �
�

x6=0
d5x

2

3(4�)3
�µ1···µ5tr

�
1

2
Aµ1Fµ2µ3Fµ4µ5 � i

2
Aµ1Aµ2Aµ3Fµ4µ5 � 1

5
Aµ1Aµ2Aµ3Aµ4Aµ5

�

lim
M��

det

�
D6D + M�(x6)

D6D + M�(x6) + iM2�6�7R6

�
= det

�
D̄5D

D̄5D + M2

�
=

����det

�
D̄5D

D̄5D + M2

����� e�i��/2

I = P6D
x6<0 + CS � �5D

2

Fujikawa’s method ↑	

Integer   =   non-integer + non-integer	

�6D = ⇡

Z
d

6
x

1� ✏(x6)

2

1

6(4⇡)3
✏

µ1···µ6tr[Fµ1µ2Fµ3µ4Fµ5µ6 ]

  
[Atiyah-Patodi-
Singer 1975] 
	 25 



= det

✓
D

6D +M✏(x6) + iµ�6�7R6

D

6D +M + iµ�6�7R6

◆

⇥Det

 
�(x� x

0)(D̄5D + µ✏(x5)✏(x5 � L5)R) + µ

x5,x
0
5

2

�(x� x

0)(D̄5D + µ)

!

⇥Det

 
�(x� x

0)(D̄5D + µ✏(x5)✏(x5 � L5)R5)

�(x� x

0)(D̄5D + µ✏(x5)✏(x5 � L5)R5) + µ

x5,x
0
5

2

!
,

Full 6D/5D/4D decomposition 

With W domain-wall and  
det

�
D6D + M�(x6) + iµ�(x5)�6�7R5R6

D6D + M + iµ�6�7R5R6

�

� exp(i�(P6D
x6<0 + CS))

No change in 6D bulk.  
(U(1)A cannot feel W-DW.)	

* 5D/4D decomposition is (almost) the same as 
Grabowska & Kaplan.	

CS(x5<0)

Weyl fermion !	

⇥
/ (�1)I

⇤
M � µ � 0

26 



Stora-Zumino anomaly ladder 

To summarize what we have computed, 
 
 
 
 
 

6D U(1)A anomaly → 5D parity anomaly 	

→ 4D gauge anomaly	

1

2
�5D = CS(x5<0) � �anom

�
+ gauge invariant phase

I = P + I = P6D
x6<0 + CS � �5D

2

I is hidden. 
(Next talk)	

[Stora 1983, Zumino 1983,  
Alvarez-Gaume & Ginsparg 
1984,Sumitani 1984]	

(integer)	
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4Dperturba+
ve	anomaly	

5D	Chern-
Simons	1	

5D	Chern-
Simons	2	

6DAxial	U(1)	
anomaly	

�
d5x(CS) =

�
d6xF � F � F

�g(phase) =

�

x5<0
d5x�g(CS)

[Stora 1983, Zumino 1983,  
Alvarez-Gaume & Ginsparg 
1984,Sumitani 1984]	

Stora-Zumino anomaly ladder 

28 



Summary of part I 

Our 6D determinant w/ 2-different DWs  
 
 

1.  is real, 
2. has a Weyl fermion at 4D junction, 
3. gauge anomaly originates from 6D  
    U(1)A index [Stora-Zumino anomaly ladder]. 

det

�
D6D + M�(x6) + iµ�(x5)�6�7R5R6

D6D + M + iµ�6�7R5R6

�

�(x) = x/|x|

6D U(1)A anomaly→ 5D parity anomaly→ 4D gauge anomaly 	

⇥
/ (�1)I

⇤

⇡I = �6D + �5D + �4D

29 
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From Witten’s slide “anomaly 
revisited” at Strings 2015 

Although I do not claim a complete proof, I believe that there is a
general answer for when a theory with fermions is completely
consistent and anomaly-free, meaning that the path integral on a
general manifold can be defined in a way that is anomaly-free and
consistent with all principles of unitarity, locality and cutting and
pasting. The condition is just that

e i⇡⌘ = 1

for all D + 1-manifolds Y , not just for mapping tori. Anomaly
cancellation gives the same condition just for mapping tori.

Claiming anomaly free ⇔ sign problem free.	
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Back-up slides 
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Possible applications 

•  4D→2D : Doubly gapped (M and μ)　
topological insulator can exist ? 

•  Higgs : → definition of standard model ? 
•  Higher dim theory : Our world is really 
6D ?  

33 



What are really essential ? 

•  6D : Yes. Stora-Zumino’s solution for 
consistent anomaly is unique. 

•  Two domain-walls : Yes. At least, need 
to distinguish U(1)A and P’ 

•  Gradient flow : we don’t know. no 
imaginary part even without it. 

•  Non-locality (R5,R6): probably no. but 
analysis is easier with them. 
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Phase of 5D determinant 

 
 
 
 
 
 
 
　Anomaly-free → 　　must be zero ! 

det

✓
¯

D

5D
+ µ✏(x5)

¯

D

5D
+ µ

◆
/ exp(�i⇡⌘

5D
)

⇡⌘5D = ⇡CS + �
gauge non invariant

+ �
gauge invariant

         global anomaly (old definition)	

global anomaly new def. by Witten 2015: 
no local 4D action to express the phase.	

Perturbative 
anomaly	

⌘5D
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Why 6D ? 

 can be determined only relatively  
(direct computation is ill-defined due to UV div.). 
 
 
 
      is our 6th  coordinate !  → We need 
 

5th direction to separate L/R chiral modes,  
6th direction to determine  
 
 
 
 
 

⌘5D

[Alvarez-Gaume et al. 1986] 
	

⌘5D =

Z 1

0
du

d⌘5D(u)

du

u

⌘5D
36 



CP restoration 

Complex phase of 5D determinant =  
CP violating lattice artifact (w/o CKM ) 
 
 

Our 6D construction may be 
automatically giving a counter-term to  
keep the CP symmetry at finite lattice 
spacing. 
 

[Fujikawa-Ishibashi-Suzuki 2002, 
Hasenfratz 2005] 

37 



Global anomaly classification 

•  SU(2) global anomaly : O.K. 
•  Other groups on 4-dim torus: Maybe. 
Index       can be detected by P’. 

•  But higher dim:  we don’t know. For 
example,        may 
require quite non-trivial treatment. 

Z, Z2

⇡6(SU(2)) = Z12
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Parity anomaly on a lattice 

•  P’ has an anomaly. 
•  On the lattice, we may need Ginsparg-
Wilson-type relation for P’ symmetry. 

•  The U(1)A invariant mass term in the 
kernel of overlap Dirac operator ? 
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Anomaly free condition 

1. Axial U(1) cancelation in 6D: 
 
 

 cancels perturbative anomaly. 
2. “Parity” anomaly cancelation : 
    # fundamental rep. = even 

 cancels global anomaly. 
⇒ Our determinant is real positive !　 

�

L

trT a
L{T b

L, T c
L} �

�

R

trT a
R{T b

R, T c
R} = 0
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5D -> 4D 

Together with anti-domain-wall, it becomes 
det

�
D̄5D + µ�(x5)�(x5 � L5)R5

D̄5D + µ

�

= Det

�
�(x � x�)(D̄5D + µ�(x5)�(x5 � L5)R) + µ

x5,x�
5

2

�(x � x�)(D̄5D + µ)

�
� Det

�
�(x � x�)(D̄5D + µ�(x5)�(x5 � L5)R5)

�(x � x�)(D̄5D + µ�(x5)�(x5 � L5)R5) + µ
x5,x�

5
2

�
,

µ
x5,x�

5
2 � µ2 [�(x5)�(x

�
5 � L5) + �(x5 � L5)�(x

�
5)]

Another CS on 5D    Weyl fermion !	

det
D

D + µ2
� det

bulk
(R5)

D = P 5
�D̄4DP 5

+ + P 5
+�̄4DP 5

�

1

2
�5D = CS(x5<0) +

1

2
�4D � �anom

�
� ��

�
,

��

�

x6=0
d5x

4

3(4�)3
1 � �(x5)�(x5 � L5)

2
�µ1···µ5tr

�
1

2
Aµ1Fµ2µ3Fµ4µ5

� i

2
Aµ1Aµ2Aµ3Fµ4µ5 � 1

5
Aµ1Aµ2Aµ3Aµ4Aµ5

�
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Massless Weyl fermion appears ! 

Dirac equation 
 
has a localized solution at 
as  

(D6D + M�(x6) + iµ�(x5)�6�7R5R6)�(x) = 0

x5 = x6 = 0

x̄ = (x1, x2, x3, x4)

* Opposite chiral mode appears if 	M < 0, µ < 0

�
�̄5 0
0 0

�
�(x̄) = +�(x̄)

 (x) = e

�M |x6|
e

�µ|x5|
�(x̄),

D

4D
�(x̄) = 0,

�6�(x̄) = �(x̄),

i�5�6�7R5R6�(x̄) = �(x̄)
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Summary of part 1 and 2 :  
Our 6D formulation has 

1. Stora-Zumino anomaly ladder:         　　
6D U(1)A index → gauge anomaly 

2. Global anomaly ladder :                   　　
6D exotic index → global anomaly. 

3. Gradient flow in x5 + linear interpolation 
in x6 → mirror fermions are decoupled. 

4. Anomaly free condition = sign-  
    problem free condition in 6D:　　　　　 

      Monte Carlo is O.K. ! 43 


