Anderson localisation of Dirac eigenmodes in high temperature QCD

Analysis of background gauge fields

Guido Cossu

XXXIV International Symposium on LGT Lattice 2016, Southampton July 29th 2016

Outline & motivation

- Anderson localisation basics (disorder)
- QCD spectrum at high temperature
 - Anderson localisation of eigenmodes above T_c
- What is the source of disorder in QCD? (*)
- Dirac low-modes: analysis of background gauge fields
 Conclusions

(*) Anderson Localization in high temperature QCD: background configuration properties and Dirac eigenmodes, **G. C.** and **S. Hashimoto**, JHEP 1606(2016) 056

Anderson localization (AL)

Random Schrödinger operator

$$\left(-\Delta + V(x)\right)\psi = E\psi$$

- AL: Spatial **localization** of the states of a system due to multiple quantum interference caused by **disorder**
- Huge number of experimental evidences
- V(x) random potential, **disorder**

Science (2010) 327, 1352-1355

- Anderson tight-binding model (1958) is the discretised version
- Exponential spectral localisation above a critical disorder

Anderson localization (AL)

Random Schrödinger operator

$$\left(-\Delta + V(x)\right)\psi = E\psi$$

- Above a critical energy E_c , mobility edge \rightarrow delocalisation
- (Second order) *quantum* phase transition at *E_c*

Two regions

- Localised states: Poisson distributed (classical dynamics)
- Delocalised states: Random Matrix Theory (chaotic dynamics)

Bohigas, Giannoni, Schmit conjecture 1984

Anderson localization (AL) in QCD

QCD Dirac operator

$$D\psi = \lambda\psi$$

- Second order phase transition at some $\lambda_c(T)$
- Critical exponents of the 3D Anderson model (Kovacs et al.)
- Multifractal scaling of eigenmodes at $\lambda_c(T)$ (Kovacs et al.)

QCD with chiral fermions

- Chiral fermions, domain-wall (JHEP 1606(2016) 056)
- Main question: what is the source of disorder?
- Let's investigate the gauge field background configurations
- Gauge invariant observables (after configuration smearing):
 - Polyakov loop
 - Local action
 - Local topology
- Main conclusion: Disorder → monopole-instantons (dyons)
- Chiral properties (left- and right-handed projections)
 - Is localisation triggering the chiral symmetry restoration?

Level spacing distribution, P(s)

Investigating the disorder – Polyakov loop

Re(Polyakov-loop)

Low-mode

Correlations with the Polyakov loop

1e-040.080.141e-04 $32^3 \times 12 \ \beta = 4.18 \ m = 0.01, \ T = 171 \ \text{MeV}$ $32^3 \times 12 \ \beta = 4.30 \ m = 0.01, \ T = 220 \ \text{MeV}$ Eigenmode local norm Constant norm Constant norm 0.070.120.060.11e-051e-05Eigenvalue 60.0 Eigenvalue Eigenvalue 80.0 $|\psi(x)|^2$ $|\psi(x)|^2$ 1e-06 1e-060.030.040.020.02 0.011e-071e-07-0.4 -0.2 -0.4 0 0.20.40.60.8 -0.20 0.20.40.60.8-0.6 -0.61 1 $\operatorname{Re}[P(x)]$ 8×10-6 0.5 0.5 4×10⁻⁶ 4×10^{-1} -0.5 -0.5 2×10⁻⁶ 2×10⁻⁶ High modes Low modes - 0 -1--1--0.5 0 0.5 -0.5 0 0.5 Re P Re P

Below the phase transition

Above the phase transition

Correlations with the Polyakov loop

Now change the boundary conditions (BC) of the Dirac operator for the measurements

SAME background configurations on both panels

Anti-periodic BC

Periodic BC

Action and topology, single configuration

Action and topology, systematic analysis

Interpretation in terms of topological fluctuations

Class of solutions of the YM equation of motion in a non trivial Polyakov loop background (Van Baal et al.): monopole-instantons

 $P(\infty) = \exp[2\pi i \operatorname{diag}(\mu_1, \mu_2, \mu_3)], \quad \nu_m \equiv \mu_{m+1} - \mu_m$

- ✓ Self dual solutions, charged in each Cartan subgroup
- ✓ SU(N) N-1 species of BPS monopoles, 1 Kaluza-Klein (KK) from the compact dimension
- ✓ Finite temperature calorons are composite objects
 ✓ N 1 BDS + 1 KK electrically and recording by neutral
 - ✓ N-1 BPS + 1 KK, electrically and magnetically neutral

Interpretation in terms of topological fluctuations

- $P(\infty) = \exp[2\pi i \operatorname{diag}(\mu_1, \mu_2, \mu_3)], \quad \nu_m \equiv \mu_{m+1} \mu_m$
- ✓ Supported action: $S = \frac{8\pi^2}{q^2}\nu_m$
- ✓ Topological charge fractional in general
- ✓ KK monopoles at high T:
 - ✓ Large action support ("heavy"), suppressed
 - ✓ Polyakov loop at their centre = -1/3
- ✓ Boundary condition dependence of zero modes localisation
- ✓ Low temperature all monopoles have the same action on average
 - ✓ No change of the spectrum with the boundary conditions below T_c

The properties measured on the lattice agree with the characteristics of molecules (pairs) of Kaluza-Klein monopole-instantons in SU(N)

APBC

Overlap of left-right eigenmode projections

Overlap monotonic with the eigenvalue

Overlap increases for more localized states

Conjecture: localisation triggers chiral symmetry restoration.

Conclusions

- ✓ We measured the properties of gauge invariant observables in correlation with each one of the Dirac low eigenmodes
- ✓ Boundary condition dependence of the localisation mechanism
- ✓ Properties agree with the characteristics of KK monopole-instantons pairs in SU(N)
- ✓ Conjectured mechanism relating restoration of chiral symmetry at high temperature to localisation
 - ✓ Increased localisation → larger overlap → larger eigenvalues → chiral condensate suppressed

✓ Polyakov loop transition \rightarrow localisation \rightarrow chiral transition?

Anderson localisation of Dirac eigenmodes in high temperature QCD

Analysis of background gauge fields

Guido Cossu

XXXIV International Symposium on LGT Lattice 2016, Southampton July 29th 2016

Thank you!