

Approaching the Bottom Using Fine Lattices With Domain-Wall Fermions

Brendan Fahy

JLQCD Collaboration

Lattice 2016 Southampton UK

Fahy

Introduction

Charm Results

Beyond Charm

Getting to the Bottom

- ► Lattice discretization effects are significant at large quark masses as some cutoff effects go as *am*.
- ► The JLQCD collaboration has recently produced very fine Domain Wall Lattices a = 0.080 to 0.044fm.
- We look at the charmed mesons and find that the cutoff effects are only a few percent.
- How far can we push the limits beyond charm and extrapolate to the bottom?

Fahy

Introduction

Charm Results

Beyond Charm

- $N_f = 2 + 1$ simulations on 15 Ensembles with 10,000 MD times
- Simulations at three lattice spacing $a^{-1} \approx 2.4, 3.6$ and 4.5 GeV
- ► $m_{\pi} \approx 230, 300, 400, 500 \text{ MeV}$
- Domain-Wall (Möbius) fermions
- Stout link-smearing

JLQCD Lattices

for each.

- $m_{\rm res} \approx 1 MeV$ on our coarsest lattice;
- $m_{\rm res} \approx 0$ on the finer lattices.

JLQCD Lattices

Lattice Spacing	$L^3 \times T$	L_5	am_{ud}	am_s	m_{π} [MeV]	$m_{\pi}L$
$\beta = 4.17, a = 0.080$ fm	$32^3 \times 64$	12	0.0035	0.040	230	3.0
$a^{-1} = 2.453(4) \; \mathrm{GeV}$			0.0070	0.030	310	4.0
			0.0070	0.040	310	4.0
			0.0120	0.030	400	5.2
			0.0120	0.040	400	5.2
			0.0190	0.030	500	6.5
			0.0190	0.040	500	6.5
	$48^3 \times 96$	12	0.0035	0.040	230	4.4
$\beta = 4.35, a = 0.055 \text{fm}$	$48^3 \times 96$	8	0.0042	0.018	300	3.9
$a^{-1} = 3.610(9) \; \mathrm{GeV}$			0.0042	0.025	300	3.9
			0.0080	0.018	410	5.4
			0.0080	0.025	410	5.4
			0.0120	0.018	500	6.6
			0.0120	0.025	500	6.6
$\beta = 4.47, a = 0.044$ fm	$64^3 \times 128$	8	0.0030	0.015	280	4.0
$a^{-1} = 4.496(9) \; {\rm GeV}$						

Fahy

Introduction

Charm Results

Beyond Charm

Measurements

- ► Correlators calculated on each lattice for both smeared and unsmeared Z₂ sources
- ► Measurements were produced on 100 configurations with 6 8 source points each.
- Combined fit to Axial and Pseudoscalar correlators

D decay constant

- Chiral and Continuum extrapolation of *f_D*
- The lattice spacing dependence is small

•
$$f_D = 212.8 \pm 1.7 \pm 3.6 \text{ MeV}$$

D_s decay constant

- Chiral and Continuum extrapolation of f_{Ds}
- Fit does not go through the lines due to miss tuning of m_s
- Interpolated using $2m_K^2 m_\pi^2$
- $f_{D_s} = 244.0 \pm 0.84 \pm 4.1 \text{ MeV}$

Comparison of $f_{D(s)}$ to existing results

(PRELIMINARY)

Fahy

Introduction

Charm Results

Beyond Charm

- Since cutoff effects at the charm are reasonably controlled, how far above the charm mass can we go?
- ▶ Bare quark masses chosen $m_i = (1.25)^i m_c$:

All heavy quarks treated with DW

Beyond Charm

Beta	$m_0 = m_c$	m_1	m_2	m_3	m_4	m_5
4.17	0.4404	0.5505	0.6881	0.8600		
4.35	0.2729	0.3411	0.4264	0.5330	0.6661	0.8327
4.45	0.2105	0.2631	0.3289	0.4111	0.5139	0.6423

Heavy-light and heavy-strange results

 $F\sqrt{m}$ for both h-l and h-s for each of our heavy quark masses. Contains large discretization effects.

Heavy-light and heavy-strange results

Global fit to $(1 + C_1/m + C_2/m^2)$ excluding $m_q > 0.7$ with $\gamma_1(a^2m^2)$, $\gamma_2(a^2)$) and linear chiral and m_s corrections.

Fahy

Introduction

Charm Results

Beyond Charm

Account for the leading discretization effects

- Adjust the meson masses using m_1 and m_2 from $E = m_1 + \frac{p^2}{2m_2} + \dots$
- ► In the Continuum

$$S(p) = \frac{1}{\not \! p + m} \quad \rightarrow C(t, \vec{p} = 0) = \int \frac{dp_0}{2\pi} S(p) e^{ip_0 t} = \frac{1 + \gamma^0}{2} e^{-mt}$$

- On the lattice this is not a simple exponential due to the non-locality of 4D effective Dirac operator of DW.
- In order to eliminate the leading discretization effects, we divide the correlator by the tree-level heavy quark propagator of DW and multiply back the corresponding continuum exponential. This is an extension of the Fermilab approach for DW.

Fahy

Introduction

Charm Results

Beyond Charm

Account for the leading discretization effects

- ► Matching between QCD and HQET. This allows 1/m expansion.
- $\blacktriangleright \ A_{\mu}^{\rm QCD} = C(\mu) A_{\mu}^{\rm HQET}(\mu)$
- ▶ Perturbative calculation available¹ up to three loops (α_s^3)
- ► Global fit to with continuum limit $(A + B/m + C/m^2)$ excluding $m_q > 0.7$
- Fit function accounts for γ₁α_s(a²m²), γ₂(a²) and linear chiral and m_s corrections. Note tree level (am)² is already removed.

¹Bekavac et al. arXiv:0911.3356

 $f_B: 195.5 \pm 3.2 \pm 3.3 \,\mathrm{MeV}$

Check: at the charm this gives $f_D: 215.5 \pm 2.0 \text{ MeV}$ consistent with the charm only analysis

Check: at the charm $f_{D_s}: 244.7 \pm 1.0 \,\mathrm{MeV}$ consistent with the charm only analysis

Comparison of $f_{B_{(s)}}$ to existing results

(PRELIMINARY)

Fahy

Introduction

Charm Results

Beyond Charm

Conclusions and Future work

- Results of heavy mesons seem promising and the cutoff effects for heavy domain wall fermions can be partially understood
- Leading a^2 effects seem to be identifiable and corrected for
- Extrapolation to the B using standard DW fermions seems somewhat reasonable
- Investigate f_{B_s}/f_B
- Further explore the "ratio method" using ratios of successive heavy masses to constrain the extrapolation

Fahy

Introduction

Charm Results

Beyond Charm

Thank You.

