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Outline

• Photon zero modes  

• Charged particle correlators and 
mass extraction


• Comparison with Uno & 
Hayakawa gauge fixing


• Very briefly:


• Charge renormalisation


• Decuplet baryon isospin splittings
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“Isospin splittings of meson and baryon masses from  
three-flavor lattice QCD + QED” 

R. Horsley et al., to appear JPG(2016), arXiv:1508.06401

“QED effects in the pseudoscalar meson sector” 
R. Horsley et al., JHEP1604,093(2016), arXiv:1509.00799

∆M QCD + QED QED QCD [16] Experiment

Mπ+ − Mπ0 4.60(20) 4.59

MK0 − MK+ 4.09(10) −1.66(6) 3.93

Mn − Mp 1.35(18)(8) −2.20(28)(10) 3.51(31) 1.30

MΣ− − MΣ+ 7.60(73)(8) −0.63(8)(6) 9.07(47) 8.08

MΞ− − MΞ0 6.10(55)(45) 1.26(16)(13) 5.58(31) 6.85

Table 1: Mass splittings in the infinite volume, in units of MeV. The first error is the statistical
error from the extrapolation of the points on the 483 × 96 lattice. The second error (if any)
is a systematic error estimated from the fit to both the 483 × 96 and 323 × 64 volumes. The
QCD + QED and QED results are compared with previous results from pure QCD [16] and the
experimental numbers.

uncertainty. We now can compare the baryon mass splittings of this calculation with our recent
results from pure QCD [16]. The QCD numbers are quoted in the fourth column of Table 1.
They have been brought in line with our new value of ϵ (17). Both sets of results are found
to be largely consistent. It is worth emphasizing that the QED and pure QCD contributions
to the nucleon mass splitting sum up nicely to the total QCD + QED contribution, which is
encouraging. Finally, in the last column of Table 1 we quote the experimental mass splittings.
We observe good agreement for both octet pseudoscalar mesons and octet baryons. Since we
have not yet computed the QCD contribution to the π0 mass from π0–η mixing, arising from
quark-line disconnected diagrams, we only quote the QED contribution to the Mπ+ − Mπ0 mass
difference. It is worth noting that phenomenological estimates for the disconnected contribution
are of the order of 0.1 MeV [18], which is within the precision of our present calculation. Figure 8
summarizes our results.

Both the total QCD + QED mass splittings as well as the QED contributions satisfy the
Coleman-Glashow relation [19] by construction. So do the experimental values, which once
again supports our group-theoretical approach and truncation (14). The QED contribution to
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Figure 8: Mass splittings ∆M of octet pseudoscalar meson and baryon masses compared to
experiment.
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Figure 9: The allowed ratio of quark masses mu/md for a range of against αEM. The solid circle is
our result in the MS scheme. The region of no fusion is to the left, the region where all hydrogen
is converted to helium stars is to the right.

the n − p mass splitting in the ‘Dashen’ and MS schemes turns out to be somewhat larger (in
absolute terms) than the numbers derived from the Cottingham formula [20]. It should be noted
though that the individual estimates [20] cover a wide range of values. To accommodate the
lower numbers from the Cottingham formula, the result of pure QCD [16] (fourth column of
Table 1) would have to be smaller by a factor up to two as well. Our QED result is also larger
than the recently reported lattice number in [3]. In our approach the QED and QCD separation
is defined within the meson sector. In contrast, [3] chose the QED part of the Σ+ − Σ− mass
difference to be zero, for which we identify a clear nonzero signal. This would be the case
if (2/3) βEM

1 + βEM
2 + (1/3) βEM

3 = 0 in our mass expansion (14). A fit to our data with this
constraint gives (Mn − Mp)QED = −1.71(28)(10) MeV in the ‘Dashen’ scheme. While this result
is largely compatible with the analysis of Walker-Loud, Carlson and Miller [20], (Mn−Mp)QED =

−1.30(50) MeV, it illustrates quite clearly that the QED part of the n− p mass difference depends
sensitively on how electromagnetic and strong contributions are separated. While our results do
not support higher order terms in the quark mass expansion, it may be possible that one source
of the discrepancy could be related to nonlinearities in the chiral behavior of the electromagnetic
self energy [21] that are not being captured by the Taylor expansion.

As discussed in the introduction, the existence of the Universe as we know it is highly sensi-
tive to the magnitude of the n − p mass difference. Having an analytic expression for the mass
of neutron and proton, Eq. (14), we can express the allowed region in terms of the fundamental
parameters mu,md and αEM, as shown in Fig. 9. Not shown are the bounds on αEM from the
stability of atoms [22]. It turns out that both αEM and the ratio of light quark masses mu/md

are finely tuned. At the physical fine structure constant the ratio is restricted to a narrow region
around mu/md = 0.5.
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Photon zero mode



Lattice QCD+QED

We work with a gauge coupling corresponding to ↵QED = 0.1



Photon zero mode
• Consider zero mode of EM gauge field 

• Photon action invariant:  

• Not constrained by Lorenz gauge-fixing condition: 
 
 
 

• Couplings to quarks:
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Gauge transformations on a box
• Consider U(1) field transformation: 

• Shift of zero mode: 

• Gauge-field action invariant 

• Simple closed Wilson loops invariant 

• Polyakov loops:

Aµ(x) ! Aµ(x) +�µ↵(x)
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Gauge-fixing in a box
• On each configuration we map the zero mode into the interval 

• Preserves importance sampling of path integral

� ⇡

|Qd|Nµ
< Aµ  ⇡

|Qd|Nµ

Periodicity
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Correlators in uniform U(1) external field
• Consider quarks propagating in uniform  

background field 

• Absorb U(1) phase into fermion field  
transformation: 
• Twisted boundary conditions for charged hadrons 

• Correlator

Just the same as twisted 
BCs that have been 

studied extensively in the 
literature. 

eg. Sachrajda & Villadoro, 
Tiburzi et al., Bijnens et al.

Bµ

kµ ! kµ +QBµ

⇠ e�t
p

(~k+Q ~B)2+m2
eiQB4t



Extracting a mass: Complex phase (toy model)
• Zero modes move through simulation time 

• Not a simple uniform phase
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Extracting a mass: Kinetic shift
• Rest energies get a spread in kinetic energy from spatial zero mode 

• Mass estimate on ensemble average 

• Charge 1 meson (“u-dbar”)

E =

q
m2 +Q2 ~B2

m =
q
E2 �Q2h ~B2i

E = 0.1708(12)

243x48 (subset)
h ~B2i = 0.0027

! m = 0.1626(12)
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Bin ensembles by B2

• Compute energies on binned  
subensembles
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• Compute energies on binned  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Bin ensembles by B2

• Compute energies on binned  
subensembles
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Uno & Hayakawa gauge fixing
• To eliminate zero mode complications (preserve reflection positivity), Uno 

& Hayakawa (2008) proposed additional gauge-fixing condition where all 
spatial zero modes of the U(1) field are eliminated 

• In continuum, any gauge field can be transformed to this condition by a 
simple gauge transformation 

• Because of box quantisation condition, we cannot satisfy this condition 
by a gauge transformation 
• In practice, U(1) field updates must be performed in Fourier space 

• For our ensembles, we can compare our results by forcing this zero mode 
condition 
• Amounts to a “partial-quenching” of twists in the sea 

• Potential to be corrected by appropriate reweighting

Ãµ(~k = 0, t) = 0, 8t



New results with spatial zero modes removed
• Recompute spectra on modified gauge fields 

• Consider same binning of trajectories as above
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Larger volume comparison
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Charge renormalisation



Photon propagators
• Fourier transform U(1) field to compute propagators: 

• Define 

• Charge renormalisation 

• Vacuum polarisation
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Lattice symmetries
• Lattice irreps for asymmetric (L/T) lattices [see Aubin et al. PRD(2016)]
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Charge renormalisation
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Decuplet isospin splittings



Decuplet splittings in vicinity 
of SU(3) symmetric point

Good agreement with 
phenomenology

Phenomenological “data”: Cutkosky PRC(1993)



Final remarks

• Zero modes disrupt simple extraction 
of charged hadron masses


• Numerical evidence suggests these 
can be reasonably controlled by 
accounting for systematics 
[further investigations warranted]


• Potential for using Uno & Hayakawa 
with reweighting


• Charge renormalisation ~0.9 
[more soon]


• First look at decuplet isospin 
splittings
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