Charmed Bottom Mesons from Lattice QCD

Nilmani Mathur Department of Theoretical Physics Tata Institute of Fundamental Research, India

Collaborators : ILGTI, M. Padmanath, R. Lewis

Lattice 2016, University of Southampton

Why Charmed-bottom mesons ?

$n \ ^{2s+1}\ell_J \ J^{PC}$	$I = 0$ $c\overline{c}$	$\mathbf{I} = 0$ $b\overline{b}$	$I = \frac{1}{2}$ $c\overline{u}, c\overline{d}; \overline{c}u, \overline{c}d$	I = 0 $c\overline{s}; \overline{c}s$	$\mathbf{I} = \frac{1}{2}$ $b\overline{u}, b\overline{d}; \overline{b}u, \overline{b}d$	$\mathbf{I} = 0$ $b\overline{s}; \ \overline{b}s$	$\mathbf{I} = 0$ $b\overline{c}; \ \overline{b}c$
$1 {}^{1}S_{0} \qquad 0^{-+}$	$\eta_c(1S)$	$\eta_b(1S)$	D	D_s^\pm	В	B_s^0	B_c^\pm
$1 {}^{3}S_{1}$ 1	$J/\psi(1S)$	$\Upsilon(1S)$	D^*	$D_s^{*\pm}$	B^*	B_s^*	
$1 {}^{1}P_{1}$ 1^{+-}	$h_c(1P)$	$h_b(1P)$	$D_1(2420)$	$D_{s1}(2536)^\pm$	$B_1(5721)$	$B_{s1}(5830)^0$	
$1 {}^{3}P_{0} = 0^{++}$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$D_0^*(2400)$	$D_{s0}^{*}(2317)^{\pm \dagger}$			
$1 {}^{3}P_{1}$ 1^{++}	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	$D_1(2430)$	$D_{s1}(2460)^{\pm\dagger}$			
$1 {}^{3}P_{2} \qquad 2^{++}$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$D_2^*(2460)$	$D^*_{s2}(2573)^{\pm}$	$B_2^*(5747)$	$B_{s2}^{*}(5840)^{0}$	
$1 {}^{3}D_{1}$ $1^{}$	$\psi(3770)$			$D_{s1}^*(2860)^{\pm\ddagger}$			
$1 {}^{3}D_{3} {}^{3}$				$D_{s3}^*(2860)^{\pm}$			
$2 {}^{1}S_{0} \qquad 0^{-+}$	$\eta_c(2S)$	$\eta_b(2S)$	D(2550)				
$2 {}^{3}S_{1}$ 1	$\psi(2S)$	$\Upsilon(2S)$		$D_{s1}^{*}(2700)^{\pm\ddagger}$			
$2 {}^{1}P_{1}$ 1 ⁺⁻		$h_b(2P)$					
$2 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{++}$	$\chi_{c0,2}(2P)$	$\chi_{b0,1,2}(2P)$				@PDG	
$3 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{++}$		$\chi_b(3P)$					

Set up

- Gauge Configurations: HISQ 2+1+1
- Valence quark propagators :
 - -- Light to charm : Overlap
 - -- Bottom : NRQCD with improved coefficients

Overlap Fermions

- Some desirable features:
 - No O(a) error.

$$(1 - \frac{1}{2}D)D(m)^{-1} = (D_c + ma)^{-1}$$

- The effective propagator :

 $D_c = D/(1 - D/2)$ is chirally symmetric, i.e., { γ_5 , D_c } = 0.

- D_c + m is like in the continuum formalism.
 Multi-mass algorithm (more than 20 masses -10-15% overhead
- Renormalization may be relatively simple (e.g. with chiral Ward identity).

Undesirable feature:

-- Cost

Overlap fermions on 2+1+1 Flavors HISQ Configurations

Lattices used for this study : HISQ gauge configurations from MILC $24^3 \times 64$, a = 0.12 fm, $m_l/m_s = 1/5$, $m_\pi L = 4.54$, $m_\pi = 305$ MeV $32^3 \times 96$, a = 0.089 fm, $m_l/m_s = 1/5$, $m_\pi L = 4.5$, $m_\pi = 312$ MeV $48^3 \times 144$, a = 0.058 fm, $m_l/m_s = 1/5$, $m_\pi L = 4.51$, $m_\pi = 319$ MeV PHYSICAL REVIEW D 87, 054505 (2013) (MILC)

HYP smearing on gauge fields

Both point source and coulomb gauge fixed wall source are used

No of eigenvectors projected : 350 (a = 0.012 fm)

Rest mass Vs Kinetic mass

Charm mass is tuned by meson kinetic mass and not from rest massa la FermiLab formulation

El-khadra et al, PRD55, 3933(1997)

Expanding the energy momentum relation in powers of *pa*

$$E(p)^{2} = M_{1}^{2} + \frac{M_{1}}{M_{2}}\mathbf{p}^{2} + O(\mathbf{p}^{4})$$

= M_{1}^{2} + C^{2}p^{2} |\mathbf{p}| << m_{0}, 1/a

Rest mass : $M_1 = E(\mathbf{0})$

Kinetic mass : $M_2 = M_1/C^2$

Dispersion relation (at charm mass)

Finite momentum wall source is used to project to particular momentum state which reduce errorbars substantially.

Lattice spacings and tuning of charm and strange masses

Lattice spacings are calculated by Omega(sss) mass = 1672 GeV

48³ x 144 : 0.0582(5) fm 32³ x 96 : 0.0877(10) fm 24³ x 64 : 0.1192(14) fm which are quite consistent with lattice spacings determined by MILC

Omega(sss) effective mass

Lattice spacings and tuning of charm and strange masses

Lattice spacings are calculated by Omega(sss) mass = 1672 GeV

48³ x 144 : 0.0582(5) fm 32³ x 96 : 0.0877(10) fm 24³ x 64 : 0.1192(14) fm which are quite consistent with lattice spacings determined by MILC

NRQCD Action

 ∇ is the symmetric lattice derivative

 $\Delta^{(2)}$ and $\Delta^{(4)} \implies \sum_i D_i^2$ and $\sum_i D_i^4$

Tadpole improvement.

 $\begin{array}{c} H_0 \implies \mathcal{O}(v^2) \\ \delta H \implies \mathcal{O}(v^4). \end{array}$

Coefficients are improved $O(\alpha_s^2 a^2 v^4)$

Dowdall et all, PRD 85,054509,2012 A. Hart et all, PRD 79, 074008 (2009)

$$aE(P) = aE(0) + \sqrt{a^2 P^2 + a^2 M_{\text{Kin}}^2}$$
$$aM_{\text{Kin}} = \frac{a^2 P^2 - (a\Delta E)^2}{2a\Delta E}$$

$$\bar{M}_{\text{Kin}}(1S) = \frac{(3M_{\text{Kin}}(\Upsilon) + M_{\text{Kin}}(\eta_b))}{4}$$

b-quark mass tunning

We have calculated ground state energy spectra of mesons and baryons for all possible quantum numbers with *l*, *s*, *c* and *b* quarks

Decay constants from two points functions are also being evaluated

Results for charmed-bottom mesons and baryons will be presented

Pseudoscalar meson mass

Pseudoscalar meson mass

Hyperfine splitting in charmonia

Hyperfine splitting in bottomonia

Hyperfine splitting : B_s

B_c (0⁻)

$$E_X^{(\text{sub})} = E_X - \frac{n_c}{2}\overline{E}_{c\bar{c}} - \frac{n_b}{2}\overline{E}_{b\bar{b}}$$

Prediction : B_c^*

> Only pseudoscalar B_c is known experimentally (also possibly $B_c(2s)$?)

Hyperfine splittings (MeV)

- bu : 45
- bs : 48
- bb : 62
- cc : 113
- bc : ?

B_c – Onium or B meson type?

Prediction : B_c^*

Mass-splittings

Hyperfine splittings in bottom mesons

Triply bottom baryon

$$E_X^{(\text{sub})} = E_X - \frac{n_c}{2}\overline{E}_{c\bar{c}} - \frac{n_b}{2}\overline{E}_{b\bar{b}}$$

Hyperfine splittings in charmed-bottomed baryons

Conclusions and Outlooks

- Ground state hadron spectra including all flavors are calculated using NRQCD (b) and overlap (l, s, and c) valence quarks on HISQ gauge configurations.
 Basic mass spectra for charmed-bottom mesons and
 - baryons are presented here.
- Proper chiral and continuum limits need to be taken
- Decay constants are under study