# DOMAIN DECOMPOSITION AND MULTILEVEL INTEGRATION FOR FERMIONS I 

Marco Cè, Leonardo Giusti, Stefan Schaefer

Lattice 2016, July 27th, 2016
Based on: Cè, Giusti, S.S, Phys.Rev. D93 (2016) 094507



## Motivation

## Exponential signal-to-noise problem.

Nucleon two-point function

$$
C_{\mathrm{n}}\left(x_{0}\right) \propto e^{-m_{N} x_{0}}
$$



Variance has contribution from three pion state

$$
\operatorname{var}\left(C_{\mathrm{n}}\right) \propto e^{-3 m_{\pi} x_{0}}
$$



Signal-to-noise ratio

$$
\frac{C_{\mathrm{n}}\left(x_{0}\right)}{\delta C_{\mathrm{n}}\left(x_{0}\right)} \propto \sqrt{N} e^{-\left(m_{\mathrm{n}}-\frac{3}{2} m_{\pi}\right) x_{0}}
$$

Becomes a problem at small pion masses
Lattice computations involving baryons highly unreliable.

## Motivation

Larger distances need more averaging

$$
\frac{C\left(x_{0}\right)}{\delta C\left(x_{0}\right)} \propto \sqrt{N} e^{-\alpha x_{0}}
$$

Quark-line disconnected correlators
$\rightarrow$ contribution from the vacuum, error constant with distance.

Use locality of the theory
Regions far away from each other are more and more independent
$\rightarrow$ can update them independently

Multilevel integration

## General idea



Decompose lattice in regions
Action needs to decompose into independent contributions from these regions.

Write observable in product of region's contribution
Classical examples
Multihit

```
Parisi, Petronzio, Rapuano'83
```

```
    Lüscher & Weisz '01
```

```
    Lüscher & Weisz '01
```

Multilevel for Wilson loops

## General idea

Two-Level algorithm


Level-0
$N_{0}$ realizations of boundary field $B$

## Level- 1

For each of the $N_{0}$ B fields: $N_{1}$ gauge fields in $L$ and $R$
$\rightarrow$ Cost $\propto N_{0} \times N_{1}$

Construction of $N_{0} \times N_{1}^{2}$ configurations.
In best case: signal-to-noise ratio $\propto \sqrt{N_{0}} \times N_{1}$
More slices: get effectively $N_{1}^{N_{\text {slice }}}$ configs
see also: Meyer'02, Giusti, Della Morte'08,'10

## General idea

## L B R

## O(x)

- 

${ }^{\circ} \mathrm{O}^{\prime}(\mathrm{y})$

Start with set of $N_{0}$ level-0 gauge field configurations
Define the boundary field $U_{B}$

$$
\begin{aligned}
& \left\langle\{O(x)-\bar{O}\}\left\{O^{\prime}(y)-\bar{O}^{\prime}\right\}\right\rangle \\
& =\frac{1}{Z_{B}} \int\left[d U_{B}\right] e^{-S_{B}\left[U_{B}\right]}[\{O(x)-\bar{O}\}]_{L}\left(U_{B}\right)\left[\left\{O^{\prime}(y)-\bar{O}^{\prime}\right\}\right]_{R}\left(U_{B}\right)
\end{aligned}
$$

Estimate integrals over variables in $L$ and $R$ with $N_{1}$ configs per $U_{B}$

$$
\begin{aligned}
& {[O(x)]_{L}\left(U_{B}\right)=\frac{1}{Z_{L}} \int\left[d U_{L}\right] e^{-S\left(U_{B}, U_{L}\right)} O(x)} \\
& {[O(y)]_{R}\left(U_{B}\right)=\frac{1}{Z_{R}} \int\left[d U_{R}\right] e^{-S\left(U_{B}, U_{R}\right)} O^{\prime}(y)}
\end{aligned}
$$

## Requirements

For multi-level to work we need two ingredients

1) Factorized observable
2) Factorized action

Since we have used Wick's theorem, this is not obvious for observables and for the QCD action

Quark-line connected

$$
\begin{aligned}
& \left\langle P^{u d}(x) P^{d u}(y)\right\rangle \\
= & -\frac{1}{Z} \int[d U] \operatorname{det} D e^{-S_{g}[U]} \operatorname{tr}\left[\frac{1}{D_{m_{u}}}(x, y) \gamma_{5} \frac{1}{D_{m_{d}}}(y, x) \gamma_{5}\right]
\end{aligned}
$$



Quark-line disconnected

$$
\begin{aligned}
& \left\langle P^{u u}(x) P^{d d}(y)\right\rangle \\
& =\frac{1}{Z} \int[d U] \operatorname{det} D e^{-S_{g}[U]} \operatorname{tr}\left[\frac{1}{D_{m_{u}}}(x, x) \gamma_{5}\right] \operatorname{tr}\left[\frac{1}{D_{m_{d}}}(y, y) \gamma_{5}\right]
\end{aligned}
$$

## Approximate observables

Classical methods assume exact factorization of observable.
For fermions: only approximate observable factorizable.

$$
\langle\mathcal{O}\rangle=\left\langle\mathcal{O}_{\text {approx }}\right\rangle+\left\langle\mathcal{O}-\mathcal{O}_{\text {approx }}\right\rangle
$$

$\left\langle\mathcal{O}_{\text {approx }}\right\rangle$ : Use multilevel algorithm
$\left\langle\mathcal{O}-\mathcal{O}_{\text {approx }}\right\rangle$ : standard estimate of correction term
Task: Find an excellent approximation to observable.

## Factorizing the propagator

$$
\begin{aligned}
& D=\left(\begin{array}{cc}
D_{\Gamma} & D_{\partial \Gamma} \\
D_{\partial \Gamma^{*}} & D_{\Gamma^{*}}
\end{array}\right)
\end{aligned}
$$

For the Wilson Dirac operator, $D_{\text {дг }}$ and $D_{\partial \Gamma^{*}}$ act on the boundaries.

$$
D^{-1}=\left(\begin{array}{cc}
S_{\Gamma}^{-1} & -S_{\Gamma}^{-1} D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} \\
-D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} S_{\Gamma}^{-1} & S_{\Gamma^{*}}^{-1}
\end{array}\right)
$$

with the Schur complements

$$
S_{\Gamma}=D_{\Gamma}-D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} \quad \text { and } \quad S_{\Gamma^{*}}=D_{\Gamma^{*}}-D_{\partial \Gamma^{*}} D_{\Gamma}^{-1} D_{\partial \Gamma}
$$

Basic strategy: substitute $S_{\Gamma}^{-1} \rightarrow D_{\Gamma}^{-1}$ in controlled manner

## Case I: disconnected correlation functions

Quark-line disconnected correlation functions

$$
\left\langle P^{u u}(x) P^{d d}(y)\right\rangle=\frac{1}{Z} \int[d U] \operatorname{det} D e^{-S_{g}[U]} \operatorname{tr}\left[\frac{1}{D_{m_{u}}}(x, x) \gamma_{5}\right] \operatorname{tr}\left[\frac{1}{D_{m_{d}}}(y, y) \gamma_{5}\right]
$$

Put boundary on time-slice between $x$ and $y$.
Impose Dirichlet boundary conditions on surface of $B$.

$$
D^{-1}(x, x) \rightarrow D_{\Gamma}^{-1}(x, x)
$$

Neglect contribution from links far away from $x$.


## Quark-line disconnected

$$
\begin{aligned}
D^{-1} & =\left(\begin{array}{cc}
S_{\Gamma}^{-1} & -S_{\Gamma}^{-1} D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} \\
-D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} S_{\Gamma}^{-1} & S_{\Gamma^{*}}^{-1}
\end{array}\right) \\
S_{\Gamma} & =D_{\Gamma}-D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} \\
S_{\Gamma^{*}} & =D_{\Gamma^{*}}-D_{\partial \Gamma^{*}} D_{\Gamma}^{-1} D_{\partial \Gamma}
\end{aligned}
$$

Approximation by imposing Dirichlet boundary conditions on $B$.

$$
D^{-1} \approx\left(\begin{array}{cc}
D_{\Gamma}^{-1} & \cdot \\
\cdot & D_{\Gamma^{*}}^{-1}
\end{array}\right)
$$

Correction term

$$
\begin{aligned}
& \frac{1}{D_{\Gamma}-D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}}}-\frac{1}{D_{\Gamma}} \\
= & \frac{1}{D_{\Gamma}-D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}}} D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} \frac{1}{D_{\Gamma}}=-D^{-1} D_{\partial \Gamma^{*}} D_{\Gamma}^{-1}
\end{aligned}
$$

## Correction term

For diagonal elements

$$
D^{-1}(x, x)=D_{\Gamma}^{-1}-D^{-1} D_{\partial \Gamma^{*}} D_{\Gamma}^{-1}=D_{\Gamma}^{-1}+\delta D_{\Gamma}^{-1}
$$

Correction term has propagator to and from boundary.

$$
\left.\operatorname{tr} \gamma_{5} \delta D^{-1}(y, y)\right] \propto e^{-m_{\pi} \Delta}
$$

Full two point function split in four contributions

$$
\begin{aligned}
&\left\langle\left[\operatorname{tr} \gamma_{5} D^{-1}(x, x)\right]\left[\operatorname{tr} \gamma_{5} D^{-1}(y, y)\right]\right\rangle \\
&=\langle \left\langle\left[\operatorname{tr} \gamma_{5} D_{\Gamma}^{-1}(x, x)\right]\left[\operatorname{tr} \gamma_{5} D_{\Gamma^{*}}^{-1}(y, y)\right]\right\rangle \\
&+\left\langle\left[\operatorname{tr} \gamma_{5} D_{\Gamma}^{-1}(x, x)\right]\left[\operatorname{tr} \gamma_{5} \delta D_{\Gamma^{*}}^{-1}(y, y)\right]\right\rangle+\left\langle\left[\operatorname{tr} \gamma_{5} \delta D_{\Gamma}^{-1}(x, x)\right]\left[\operatorname{tr} \gamma_{5} D_{\Gamma^{*}}^{-1}(y, y)\right]\right\rangle \\
&+\left\langle\left[\operatorname{tr} \gamma_{5} \delta D_{\Gamma}^{-1}(x, x)\right]\left[\operatorname{tr} \gamma_{5} \delta D_{\Gamma^{*}}^{-1}(y, y)\right]\right\rangle
\end{aligned}
$$

## Case II: connected correlation functions

Quark-line connected correlation functions

$$
\begin{aligned}
& \left\langle P^{u d}(x) P^{d u}(y)\right\rangle \\
= & -\frac{1}{Z} \int[d U] \operatorname{det} D e^{-S_{g}[u]} \operatorname{tr}\left[\frac{1}{D_{m_{u}}}(x, y) \gamma_{5} \frac{1}{D_{m_{d}}}(y, x) \gamma_{5}\right]
\end{aligned}
$$

Factorization less obvious
First factorization of the propagator
Second step factorization of two-point function


$$
D^{-1}=\left(\begin{array}{cc}
S_{\Gamma}^{-1} & -S_{\Gamma}^{-1} D_{\partial \Gamma} D_{\Gamma^{*}}^{-1} \\
-S_{\Gamma^{*}}^{-1} D_{\partial \Gamma^{*}} D_{\Gamma}^{-1} & S_{\Gamma^{*}}^{-1}
\end{array}\right)
$$

Turn formula around
Inverse of Schur complement computed by projection of full propagator

For $x \in \Gamma$ and $y \in \Gamma^{*}$

$$
\begin{aligned}
& D^{-1}(y, x) \\
& =-S_{\Gamma^{*}}^{-1}(y, \cdot) D_{\partial \Gamma^{*}} D_{\Gamma}^{-1}(\cdot, x) \\
& =-D^{-1}(y, \cdot) D_{\partial \Gamma^{*}} D_{\Gamma}^{-1}(\cdot, x)
\end{aligned}
$$



## Approximation

Introduce thick time slices


And drop contributions which are more than one time slice away by introducing Dirichelt boundary conditions


Iterate .....

$$
D^{-1}(x, y) \approx(-1)^{m-l}\left[\prod_{i=l}^{m+1} D_{\Omega_{i}^{*}}^{-1} D_{\Lambda_{i, i-1}}\right](x, \cdot) D_{\Omega_{m+2}}^{-1}(\cdot, y)
$$

## Factorized propagator

Factorization of propagator in principle works.
Potential for multi-level

- small $\Delta$ already gives excellent approximation
- can be improved by hierarchy of $\Delta_{i}$


## Problem

Observable is the full correlation function
Natural building blocks have two or three propagator on surface
Problem with memory: $\left(6 V_{3}\right)^{2}$ or $\left(6 V_{3}\right)^{3}$ complex numbers


## Summary

Multilevel methods offer a way to solve the exponential signal-to-noise problem

Need to factor observables into local contributions
For fermions it is possible to factorize approximate propagator.
Use to define approximate $n$-point functions $\rightarrow$ multilevel integration
Compute difference between approximate and exact observable with standard MC.

## Demonstration of feasibility $\rightarrow$ following talk by M. Cè

