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Motivation

Exponential signal-to-noise problem. Parisi’83, Legage’89

Nucleon two-point function

Cn(x0) ∝ e−mNx0

Variance has contribution from three pion state

var(Cn) ∝ e−3mπx0

Signal-to-noise ratio

Cn(x0)

δCn(x0)
∝
√

Ne−(mn− 3
2 mπ)x0

Becomes a problem at small pion masses

Lattice computations involving baryons highly unreliable.
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Motivation

Larger distances need more averaging

C(x0)

δC(x0)
∝
√

Ne−αx0

Quark-line disconnected correlators

→ contribution from the vacuum, error constant with distance.

Use locality of the theory

Regions far away from each other are more and more independent

→ can update them independently

Multilevel integration
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General idea

O(x)
O'(y)

L            B            R

Decompose lattice in regions

Action needs to decompose into independent contributions from
these regions.

Write observable in product of region’s contribution

Classical examples

Multihit Parisi, Petronzio, Rapuano’83

Multilevel for Wilson loops Lüscher & Weisz ’01
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General idea

Two-Level algorithm

O(x)
O'(y)

L            B            R

Level-0

N0 realizations of boundary field B

Level-1

For each of the N0 B fields: N1 gauge fields in L and R

→ Cost ∝ N0 ×N1

Construction of N0 ×N2
1 configurations.

In best case: signal-to-noise ratio ∝
√

N0 ×N1

More slices: get effectively NNslice
1 configs

see also: Meyer’02, Giusti, Della Morte’08,’10
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General idea

O(x)
O'(y)

L            B            R

Start with set of N0 level-0 gauge field configurations

Define the boundary field UB

〈{O(x)− Ō}{O′(y)− Ō′}〉

=
1

ZB

∫
[dUB]e−SB[UB][{O(x)− Ō}]L(UB)[{O′(y)− Ō′}]R(UB)

Estimate integrals over variables in L and R with N1 configs per UB

[O(x)]L(UB) =
1

ZL

∫
[dUL]e−S(UB,UL)O(x)

[O(y)]R(UB) =
1

ZR

∫
[dUR]e−S(UB,UR)O′(y)
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Requirements

For multi-level to work we need two ingredients

1) Factorized observable

2) Factorized action

Since we have used Wick’s theorem, this is not obvious for observables
and for the QCD action

Quark-line connected

〈Pud(x)Pdu(y)〉

=− 1
Z

∫
[dU]det D e−Sg[U]tr

[ 1
Dmu

(x, y)γ5
1

Dmd

(y, x)γ5
]

Quark-line disconnected

〈Puu(x)Pdd(y)〉

=
1
Z

∫
[dU]det D e−Sg[U]tr

[ 1
Dmu

(x, x)γ5
]
tr
[ 1

Dmd

(y, y)γ5
]
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Approximate observables

Classical methods assume exact factorization of observable.

For fermions: only approximate observable factorizable.

〈O〉 = 〈Oapprox〉+ 〈O −Oapprox〉

〈Oapprox〉: Use multilevel algorithm

〈O −Oapprox〉: standard estimate of correction term

Task: Find an excellent approximation to observable.
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Factorizing the propagator

 0                 1

D =

(
DΓ D∂Γ

D∂Γ∗ DΓ∗

)
For the Wilson Dirac operator, D∂Γ and D∂Γ∗ act on the boundaries.

D−1 =

(
S−1

Γ −S−1
Γ D∂ΓD−1

Γ∗

−D−1
Γ∗ D∂Γ∗S−1

Γ S−1
Γ∗

)
with the Schur complements

SΓ = DΓ −D∂ΓD−1
Γ∗ D∂Γ∗ and SΓ∗ = DΓ∗ −D∂Γ∗D−1

Γ D∂Γ

Basic strategy: substitute S−1
Γ → D−1

Γ in controlled manner
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Case I: disconnected correlation functions

Quark-line disconnected correlation functions

〈Puu(x)Pdd(y)〉 =
1
Z

∫
[dU]det D e−Sg[U]tr

[ 1
Dmu

(x, x)γ5
]
tr
[ 1

Dmd

(y, y)γ5
]

Put boundary on time-slice between x and y.

Impose Dirichlet boundary conditions on surface of B.

D−1(x, x)→ D−1
Γ (x, x)

Neglect contribution from links far away from x.

= + corr
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Quark-line disconnected

D−1 =

(
S−1

Γ −S−1
Γ D∂ΓD−1

Γ∗

−D−1
Γ∗ D∂Γ∗S−1

Γ S−1
Γ∗

)

SΓ = DΓ −D∂ΓD−1
Γ∗ D∂Γ∗

SΓ∗ = DΓ∗ −D∂Γ∗D−1
Γ D∂Γ

Approximation by imposing Dirichlet boundary conditions on B.

D−1 ≈
(

D−1
Γ ·
· D−1

Γ∗

)
Correction term

1
DΓ −D∂ΓD−1

Γ∗ D∂Γ∗
− 1

DΓ

=
1

DΓ −D∂ΓD−1
Γ∗ D∂Γ∗

D∂ΓD−1
Γ∗ D∂Γ∗

1
DΓ

= −D−1D∂Γ∗D−1
Γ
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Correction term

For diagonal elements

D−1(x, x) = D−1
Γ −D−1D∂Γ∗D−1

Γ = D−1
Γ + δD−1

Γ

= +

Correction term has propagator to and from boundary.

trγ5δD−1(y, y)] ∝ e−mπ∆

Full two point function split in four contributions

〈[trγ5D−1(x, x)][trγ5D−1(y, y)]〉

=〈[trγ5D−1
Γ (x, x)][trγ5D−1

Γ∗ (y, y)]〉

+ 〈[trγ5D−1
Γ (x, x)][trγ5δD−1

Γ∗ (y, y)]〉+ 〈[trγ5δD−1
Γ (x, x)][trγ5D−1

Γ∗ (y, y)]〉

+ 〈[trγ5δD−1
Γ (x, x)][trγ5δD−1

Γ∗ (y, y)]〉
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Case II: connected correlation functions

Quark-line connected correlation functions

〈Pud(x)Pdu(y)〉

=− 1
Z

∫
[dU]det D e−Sg[u]tr

[ 1
Dmu

(x, y)γ5
1

Dmd

(y, x)γ5
]

Factorization less obvious

First factorization of the propagator

Second step factorization of two-point function
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Factorization

D−1 =

(
S−1

Γ −S−1
Γ D∂ΓD−1

Γ∗

−S−1
Γ∗ D∂Γ∗D−1

Γ S−1
Γ∗

)
Turn formula around

Inverse of Schur complement computed by projection of full
propagator

For x ∈ Γ and y ∈ Γ∗

D−1(y, x)

= −S−1
Γ∗ (y, ·) D∂Γ∗ D−1

Γ (·, x)

= −D−1(y, ·)D∂Γ∗ D−1
Γ (·, x)

x y

x
y

14 / 17



Approximation

Introduce thick time slices

And drop contributions which are more than one time slice away by
introducing Dirichelt boundary conditions

Iterate .....

D−1(x, y) ≈ (−1)m−l
[m+1∏

i=l

D−1
Ω∗

i
DΛi,i−1

]
(x, ·) D−1

Ωm+2
(·, y)
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Factorized propagator

Factorization of propagator in principle works.

Potential for multi-level

• small ∆ already gives excellent approximation

• can be improved by hierarchy of ∆i

Problem

Observable is the full correlation function

Natural building blocks have two or three propagator on surface

Problem with memory: (6V3)2 or (6V3)3 complex numbers
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Summary

Multilevel methods offer a way to solve the exponential signal-to-noise
problem

Need to factor observables into local contributions

For fermions it is possible to factorize approximate propagator.

Use to define approximate n-point functions→multilevel integration

Compute difference between approximate and exact observable
with standard MC.

Demonstration of feasibility→ following talk by M. Cè
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