Scalar QCD at nonzero density

Jacob Wellnhofer, Falk Bruckmann

Universität Regensburg

July 29, 2016

QCD phase diagram still largely unaccessible (finite density)

- QCD phase diagram still largely unaccessible (finite density)
- dualization: early attempts still suffer from sign problem (Monomer-Dimer-Polymer-formulation [Rossi/Wolff, Karsch/Mütter])

- QCD phase diagram still largely unaccessible (finite density)
- dualization: early attempts still suffer from sign problem (Monomer-Dimer-Polymer-formulation [Rossi/Wolff, Karsch/Mütter])
- sign problem in MDP-formulation is due to spin structure, boundary conditions, fermionic anticommutation, backward hopping

- QCD phase diagram still largely unaccessible (finite density)
- dualization: early attempts still suffer from sign problem (Monomer-Dimer-Polymer-formulation [Rossi/Wolff, Karsch/Mütter])
- sign problem in MDP-formulation is due to spin structure, boundary conditions, fermionic anticommutation, backward hopping
- ightarrow use scalar 'quarks' instead (toymodel)

- QCD phase diagram still largely unaccessible (finite density)
- dualization: early attempts still suffer from sign problem (Monomer-Dimer-Polymer-formulation [Rossi/Wolff, Karsch/Mütter])
- sign problem in MDP-formulation is due to spin structure, boundary conditions, fermionic anticommutation, backward hopping
- ightarrow use scalar 'quarks' instead (toymodel)
 - gain better understanding of the nature of the sign problem

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) - 2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

•
$$\nu=0,\ldots,d-1$$
, $f=1,\ldots,N_f$ (flavors)

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,0}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,0}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) - 2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) - 2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions
- strong coupling, i.e., no gauge action

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) -2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions
- strong coupling, i.e., no gauge action
- complex scalar field instead of grassmann field

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) -2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions
- strong coupling, i.e., no gauge action
- complex scalar field instead of grassmann field
- ullet no γ structure

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) -2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions
- strong coupling, i.e., no gauge action
- complex scalar field instead of grassmann field
- $\bullet \quad \text{no } \gamma \ \text{structure} \\$
- periodic boundary conditions

$$S = \sum_{x} \sum_{f} \left(\sum_{\nu} \left(e^{\mu \delta_{\nu,\hat{0}}} \phi_{x}^{(f)\dagger} U_{x,\nu} \phi_{x+\hat{\nu}}^{(f)} + e^{-\mu \delta_{\nu,\hat{0}}} \phi_{x+\hat{\nu}}^{(f)\dagger} U_{x,\nu}^{\dagger} \phi_{x}^{(f)} \right) -2d\phi_{x}^{(f)\dagger} \phi_{x}^{(f)} - m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right)$$

- $\nu = 0, \dots, d-1$, $f = 1, \dots, N_f$ (flavors)
- discretized covariant laplacian in d-dimensions
- strong coupling, i.e., no gauge action
- complex scalar field instead of grassmann field
- no γ structure
- periodic boundary conditions
- complex action for $\mu \neq 0 \to {\rm sign}$ problem

Rewriting the Action

$$S = \sum_{x} \left(\sum_{\nu} \operatorname{Tr} \left(J_{x,\nu} U_{x,\nu} + K_{x,\nu} U_{x,\nu}^{\dagger} \right) - \sum_{f} \left(2 d \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} + m^{2} \phi_{x}^{(f)\dagger} \phi_{x}^{(f)} \right) \right)$$

$$J_{x,\nu} = e^{\mu \delta_{\nu,\hat{0}}} \sum_{f} \phi_{x+\hat{\nu}}^{(f)} \phi_{x}^{(f)\dagger} \qquad \text{forward hopping}$$

$$K_{x,\nu} = e^{-\mu \delta_{\nu,\hat{0}}} \sum_{f} \phi_{x}^{(f)} \phi_{x+\hat{\nu}}^{(f)\dagger} \qquad \text{backward hopping}$$

• $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond

- $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond
- U can be integrated out using [Eriksson/Svartholm/Skagerstam]

$$\int_{\mathrm{SU}(3)} dU \, \exp(\mathrm{Tr} \, (JU + KU^\dagger)) =$$

$$\sum_{j,k,l,n,\bar{n}} \frac{X^j}{j!} \frac{Y^k}{k!} \frac{Z^l}{l!} \frac{\Delta^n}{n!} \frac{\bar{\Delta}^{\bar{n}}}{\bar{n}!} \frac{2}{f^{(1)!} f^{(2)!}}$$

- $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond
- U can be integrated out using [Eriksson/Svartholm/Skagerstam]

$$\int_{SU(3)} dU \exp(\operatorname{Tr}(JU + KU^{\dagger})) =$$

$$\sum_{j,k,l,n,\bar{n}} \frac{X^{j}}{j!} \frac{Y^{k}}{k!} \frac{Z^{l}}{l!} \frac{\Delta^{n}}{n!} \frac{\bar{\Delta}^{\bar{n}}}{\bar{n}!} \frac{2}{f^{(1)!} f^{(2)!}}$$

• $j, k, l, n, \bar{n} = 0, 1, \dots$

- $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond
- U can be integrated out using [Eriksson/Svartholm/Skagerstam]

$$\int_{SU(3)} dU \exp(\operatorname{Tr}(JU + KU^{\dagger})) = \sum_{j,k,l,n,\bar{n}} \frac{X^{j}}{j!} \frac{Y^{k}}{k!} \frac{Z^{l}}{l!} \frac{\Delta^{n}}{n!} \frac{\bar{\Delta}^{\bar{n}}}{\bar{n}!} \frac{2}{f^{(1)}! f^{(2)}!}$$

- $j, k, l, n, \bar{n} = 0, 1, \dots$
- $f^{(1)} = k + 2l + n + \bar{n} + 1$, $f^{(2)} = j + 2k + 3l + n + \bar{n} + 2$

- $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond
- U can be integrated out using [Eriksson/Svartholm/Skagerstam]

$$\int_{\mathrm{SU}(3)} dU \, \exp(\mathrm{Tr} \, (JU + KU^{\dagger})) =$$

$$\sum_{j,k,l,n,\bar{n}} \frac{X^j}{j!} \frac{Y^k}{k!} \frac{Z^l}{l!} \frac{\Delta^n}{n!} \frac{\bar{\Delta}^{\bar{n}}}{\bar{n}!} \frac{2}{f^{(1)!} f^{(2)!}}$$

- $j, k, l, n, \bar{n} = 0, 1, \dots$
- $f^{(1)} = k + 2l + n + \bar{n} + 1$, $f^{(2)} = j + 2k + 3l + n + \bar{n} + 2$

•
$$X = \text{Tr}(KJ)$$
 $Y = \frac{1}{2}[X^2 - \text{Tr}((KJ)^2)]$

- $Z=\int \mathcal{D}\phi\mathcal{D}\phi^\dagger\mathcal{D}U\,e^S$ factorizes into SU(3) integrals for each bond
- U can be integrated out using [Eriksson/Svartholm/Skagerstam]

$$\int_{SU(3)} dU \, \exp(\text{Tr} \, (JU + KU^{\dagger})) =$$

$$\sum_{j,k,l,n,\bar{n}} \frac{X^{j}}{j!} \frac{Y^{k}}{k!} \frac{Z^{l}}{l!} \frac{\Delta^{n}}{n!} \frac{\bar{\Delta}^{\bar{n}}}{\bar{n}!} \frac{2}{f^{(1)}! f^{(2)}!}$$

•
$$j, k, l, n, \bar{n} = 0, 1, \dots$$

•
$$f^{(1)} = k + 2l + n + \bar{n} + 1$$
, $f^{(2)} = j + 2k + 3l + n + \bar{n} + 2$

•
$$X = \text{Tr}(KJ)$$
 $Y = \frac{1}{2}[X^2 - \text{Tr}((KJ)^2)]$

•
$$Z = \det(KJ)$$
 $\Delta = \det J$ $\bar{\Delta} = \det K$

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

• $\rho(|\phi|) = \prod_{x,f} e^{-(2d+m^2)|\phi_x^{(f)}|^2}$ gaussian measure

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- $\rho(|\phi|) = \prod_{x,f} e^{-(2d+m^2)|\phi_x^{(f)}|^2}$ gaussian measure
- for X,Y,Z μ -dependence cancels \to functions of only $KJ \sim A^\dagger A$ therefore positive

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- $ho(|\phi|) = \prod_{x,f} e^{-(2d+m^2)|\phi_x^{(f)}|^2}$ gaussian measure
- for X,Y,Z μ -dependence cancels \to functions of only $KJ\sim A^{\dagger}A$ therefore positive
- $\Delta, \bar{\Delta}$ in general complex, carry μ -dependence

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- $\rho(|\phi|) = \prod_{x,f} e^{-(2d+m^2)|\phi_x^{(f)}|^2}$ gaussian measure
- for X,Y,Z μ -dependence cancels \to functions of only $KJ\sim A^{\dagger}A$ therefore positive
- Δ, Δ in general complex, carry μ -dependence
- $N_f=1,2\Longrightarrow Z=\Delta=\bar{\Delta}=0$ since $\det(vw^\dagger)=0$ (outer product)

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- $\rho(|\phi|) = \prod_{x,f} e^{-(2d+m^2)|\phi_x^{(f)}|^2}$ gaussian measure
- for X,Y,Z μ -dependence cancels \to functions of only $KJ \sim A^\dagger A$ therefore positive
- Δ, Δ in general complex, carry μ -dependence
- $N_f=1,2\Longrightarrow Z=\Delta=\bar{\Delta}=0$ since $\det(vw^\dagger)=0$ (outer product)
- need at least 3 flavors to build baryons o focus on $N_f=3$

$$\bar{\Delta}_{x,\nu} = e^{-3\mu\delta_{\nu\hat{0}}} \ \phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)}) \ \left(\phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})\right)^*$$

$$\quad \bullet \quad \bar{\Delta}_{x,\nu} = e^{-3\mu\delta_{\nu\hat{0}}} \ \phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)}) \ \left(\phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})\right)^*$$

■ gaussian integration $\int \mathcal{D}\phi \mathcal{D}\phi^{\dagger}\rho(|\phi|)(\phi_x^{(f)\dagger})^a(\phi_x^{(f')})^b \sim \delta_{ab}\delta_{ff'} \Rightarrow \text{constraint}$

$$\quad \bullet \quad \bar{\Delta}_{x,\nu} = e^{-3\mu\delta_{\nu\hat{0}}} \ \phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)}) \ \left(\phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})\right)^*$$

- gaussian integration $\int \mathcal{D}\phi \mathcal{D}\phi^\dagger \rho(|\phi|) (\phi_x^{(f)\dagger})^a (\phi_x^{(f')})^b \sim \delta_{ab}\delta_{ff'} \Rightarrow \text{constraint}$
- only closed loops of $\Delta, \bar{\Delta}$ match constraint

$$\quad \bullet \quad \Delta_{x,\nu} = e^{3\mu\delta_{\nu}\hat{\mathbf{0}}} \quad \left(\phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)})\right)^* \quad \phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})$$

$$\quad \bullet \quad \bar{\Delta}_{x,\nu} = e^{-3\mu\delta_{\nu\hat{0}}} \ \phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)}) \ \left(\phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})\right)^*$$

- gaussian integration $\int \mathcal{D}\phi \mathcal{D}\phi^\dagger \rho(|\phi|) (\phi_x^{(f)\dagger})^a (\phi_x^{(f')})^b \sim \delta_{ab}\delta_{ff'} \Rightarrow \text{constraint}$
- only closed loops of Δ, Δ match constraint
- $W_C \sim e^{3N_t w_C \mu} \prod_{x \in C} |\phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)})|^2 \Rightarrow$ real and positive

$$\quad \bullet \quad \Delta_{x,\nu} = e^{3\mu\delta_{\nu}\hat{\mathbf{0}}} \quad \left(\phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)})\right)^* \quad \phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})$$

$$\quad \bullet \quad \bar{\Delta}_{x,\nu} = e^{-3\mu\delta_{\nu\hat{0}}} \ \phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)}) \ \left(\phi_{x+\hat{\nu}}^{(1)} \cdot (\phi_{x+\hat{\nu}}^{(2)} \times \phi_{x+\hat{\nu}}^{(3)})\right)^*$$

- gaussian integration $\int \mathcal{D}\phi \mathcal{D}\phi^\dagger \rho(|\phi|) (\phi_x^{(f)\dagger})^a (\phi_x^{(f')})^b \sim \delta_{ab}\delta_{ff'} \Rightarrow \text{constraint}$
- only closed loops of Δ, Δ match constraint
- $W_C \sim e^{3N_t w_C \mu} \prod_{x \in C} |\phi_x^{(1)} \cdot (\phi_x^{(2)} \times \phi_x^{(3)})|^2 \Rightarrow$ real and positive
- \Rightarrow no sign problem on closed loop configurations

Configurations

• arbitrary occupation of dual variables belonging to X,Y,Z (unoriented, no arrows) \rightarrow 'mesonic'

Configurations

- arbitrary occupation of dual variables belonging to X, Y, Z (unoriented, no arrows) → 'mesonic'
- only closed loops of dual variables corresponding to $\Delta, \bar{\Delta} \rightarrow$ 'baryonic'

Configurations

- arbitrary occupation of dual variables belonging to X,Y,Z (unoriented, no arrows) \rightarrow 'mesonic'
- only closed loops of dual variables corresponding to $\Delta, \bar{\Delta} \rightarrow$ 'baryonic'
- different from fermionic case (zeroand multi-occupation possible)

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

• X,Y,Z positive \Rightarrow locally update dual variables $j_{x,\nu},k_{x,\nu},l_{x,\nu}$ (unconstrained)

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- X,Y,Z positive \Rightarrow locally update dual variables $j_{x,\nu},k_{x,\nu},l_{x,\nu}$ (unconstrained)
- allow only closed loops of $\Delta, \bar{\Delta} \Rightarrow$ use worm-type updates for dual variables $n_{x,\nu}, \bar{n}_{x,\nu}$

$$Z = \sum_{\{j,k,l,n,\bar{n}\}} \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} \rho(|\phi|) \prod_{x,\nu} 2 \frac{X_{x,\nu}^{j_{x,\nu}} Y_{x,\nu}^{k_{x,\nu}} Z_{x,\nu}^{l_{x,\nu}} \Delta_{x,\nu}^{n_{x,\nu}} \bar{\Delta}_{x,\nu}^{\bar{n}_{x,\nu}}}{j_{x,\nu}! k_{x,\nu}! l_{x,\nu}! n_{x,\nu}! \bar{n}_{x,\nu}! f_{x,\nu}^{(1)}! f_{x,\nu}^{(2)}!}$$

- X,Y,Z positive \Rightarrow locally update dual variables $j_{x,\nu},k_{x,\nu},l_{x,\nu}$ (unconstrained)
- allow only closed loops of $\Delta, \bar{\Delta} \Rightarrow$ use worm-type updates for dual variables $n_{x,\nu}, \bar{n}_{x,\nu}$
- integrate ϕ stochastically

summary

mapped system onto spin system (similar to MDP)

- mapped system onto spin system (similar to MDP)
- no sign problem

- mapped system onto spin system (similar to MDP)
- no sign problem
- only for $N_f=3$ nontrivial $\mu\text{-dependence}$ (presumably also for higher N_f)

- mapped system onto spin system (similar to MDP)
- no sign problem
- only for $N_f=3$ nontrivial μ -dependence (presumably also for higher N_f)
- recall sign problem in MDP-formulation (fermionic) due to: boundary conditions, spin structure (staggered phases), closed fermion loops, backward hopping (all these are absent in the scalar case)

summary

- mapped system onto spin system (similar to MDP)
- no sign problem
- only for $N_f=3$ nontrivial μ -dependence (presumably also for higher N_f)
- recall sign problem in MDP-formulation (fermionic) due to: boundary conditions, spin structure (staggered phases), closed fermion loops, backward hopping (all these are absent in the scalar case)

outlook

summary

- mapped system onto spin system (similar to MDP)
- no sign problem
- only for $N_f=3$ nontrivial μ -dependence (presumably also for higher N_f)
- recall sign problem in MDP-formulation (fermionic) due to: boundary conditions, spin structure (staggered phases), closed fermion loops, backward hopping (all these are absent in the scalar case)

outlook

numerical implementation: explore phase diagram

summary

- mapped system onto spin system (similar to MDP)
- no sign problem
- only for $N_f=3$ nontrivial μ -dependence (presumably also for higher N_f)
- recall sign problem in MDP-formulation (fermionic) due to: boundary conditions, spin structure (staggered phases), closed fermion loops, backward hopping (all these are absent in the scalar case)

outlook

- numerical implementation: explore phase diagram
- go beyond strong coupling