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QCD phase diagram still largely unaccessible (finite density)

dualization: early attempts still suffer from sign problem
(Monomer-Dimer-Polymer-formulation [Rossi/Wolff,
Karsch/Mitter])

sign problem in MDP-formulation is due to spin structure,
boundary conditions, fermionic anticommutation, backward

hopping
use scalar ‘quarks’ instead (toymodel)

gain better understanding of the nature of the sign problem
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Action

S =S5 (S (et 100+ a0 o)
z f

v

—2dp Nt plf) — m2¢gf)T¢gf))

= v=0,...,d—=1 f=1,..., Ny (flavors)

= discretized covariant laplacian in d-dimensions
= strong coupling, i.e., no gauge action

= complex scalar field instead of grassmann field
= no -y structure

= periodic boundary conditions

= complex action for 1 # 0 — sign problem



Rewriting the Action
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Partition function

7 = [ D¢DPIDU e factorizes into SU(3) integrals for each
bond

U can be integrated out using |
Eriksson/Svartholm /Skagerstam]

/ dU exp(Tr (JU + KUT)) =
SU(3)
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gk, L,n,n=0,1,...

fO=k+2+n+n+1, fO=j4+2k+314+n+n+2
X =Tr(KJ) Y =1 [X?-Tr((KJ)?)]

7 = det(K.J) A = det J A =det K
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Partition function with dual variables

Xy vhy 2y Al Ay
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{j.k,l,n,n} z,v j.Z’,V'k$,V!l.Z’,V!nJ?,V!n$,V!fI,IZ!fé‘,lg!

) _
p(l9l) = 11 e~ 2d+m)Iéz " * gaussian measure

for X, Y, Z u-dependence cancels — functions of only
KJ ~ Al A therefore positive

A, A in general complex, carry p-dependence

Ny =1,2= Z =A = A =0 since det(vw') = 0 (outer
product)

need at least 3 flavors to build baryons — focus on Ny =3
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Resolving the sign problem

Ay = (60 (67 x o))" 6), - 60, x 6%,)
A:r:,zf = 6_3M6”6 ¢§31) : (¢($2) X ¢C(C3)) <¢x+u (¢x+u X ¢§::219))

gaussian integration

I DD p(|6]) () (9)0 ~ Sapdpr = constraint
only closed loops of A, A match constraint

We ~ e3Nwen T ool - (682 x o) |2 = real and positive

no sign problem on closed loop configurations
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Configurations

N
® [
N
® [
N
—0
L
[ ] ]

arbitrary occupation
of dual variables
belonging to X,Y, Z
(unoriented, no
arrows) — ‘mesonic’

only closed loops of
dual variables
corresponding to
A, A — 'baryonic’
different from
fermionic case (zero-
and multi-occupation
possible)
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{4,k,l,n,n} z,V .7$,V!kz,u!lx,l/!na:,1/!nx,u!fﬂg,lz!fx(,lz!
= X,Y,Z positive = locally update dual variables j, ,,kz .,z
(unconstrained)

= allow only closed loops of A, A = use worm-type updates for
dual variables n, ,, Ny .

= integrate ¢ stochastically
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Conclusion

summary

= mapped system onto spin system (similar to MDP)

= no sign problem

= only for Ny = 3 nontrivial py-dependence (presumably also for
higher Ny)

= recall sign problem in MDP-formulation (fermionic) due to:
boundary conditions, spin structure (staggered phases), closed
fermion loops, backward hopping
(all these are absent in the scalar case)

outlook

= numerical implementation: explore phase diagram
= go beyond strong coupling



