Double Parton Distributions of the Pion

Christian Zimmermann for RQCD, and Markus Diehl

Universität Regensburg

34th International Symposium on Lattice Field Theory

July 29, 2016
One needs double hard interactions for calculating the background of new physics discovery at LHC.

Naive description:

\[d\sigma_{DPS} = \frac{d\sigma_{SPS} d\sigma_{SPS}}{\sigma_{\text{eff}}} \]

⇒ Calculate DPS contributions, test to what extent the naive ansatz above works.
Assume factorization into soft and hard part [arXiv:1111.0910]:

\[
\frac{d\sigma}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \sum_{\text{polarization}} \sum_{\text{flavour}} \sigma_1 X_1 \bar{X}_1 \sigma_2 X_2 \bar{X}_2 \frac{C}{\mathcal{C}} \int d^2 y \ F_{X_1 X_2}(x_i, y) F_{\bar{X}_1 \bar{X}_2}(\bar{x}_i, y)
\]

+ \{\text{interference}\} + \{\text{higher twist}\}

with collinear Double Parton Distributions (DPDs):

\[
F_{X_1 X_2}(x_1, x_2, y) = \left[\prod_{j=1}^{2} \int \frac{dz^-_i}{2\pi} e^{i x_j z^-_j p^+} \right] 2p^+ \int dy^- \langle h(p) | \mathcal{O}_{X_1}(0, z_2) \mathcal{O}_{X_2}(y, z_1) | h(p) \rangle |_{z_i=0}
\]

\[
\mathcal{O}_{X}(y, z) = \bar{q}(y - \frac{z}{2}) \Gamma_X q(y + \frac{z}{2}) \Big|_{z+y=0}
\]
DPDs: Mellin Moments and Decompositions

First Mellin Moment:

\[M_{X_1 X_2}(y) = \int_0^1 dx_1 \int_0^1 dx_2 \left[F_{X_1 X_2}(x_1, x_2, y) - a_{X_1} F_{\bar{X}_1 X_2}(x_1, x_2, y) \right. \]

\[- a_{X_2} F_{X_1 \bar{X}_2}(x_1, x_2, y) + a_{X_1} a_{X_2} F_{\bar{X}_1 \bar{X}_2}(x_1, x_2, y) \]

\[= 2(p^+)^{-1} \int dy \left\langle h(p) \right| \mathcal{O}_{X_1}(0) \mathcal{O}_{X_2}(y) | h(p) \rangle \bigg|_{y^+ = 0} \]

\[\Rightarrow M^p_{X_1 X_2} \text{ can be obtained from the lattice.} \]

Can decompose DPD matrix elements into invariant functions e.g.:

\[M^p_{SS/PP} = 2m_h^2 A_{SS/PP}(py, y^2) \]

\[\mathcal{T} M^p,\{\mu\nu\} = \left[2p^\mu p^\nu - \frac{1}{2} g^{\mu\nu} p^2 \right] A_{VV/AA}(py, y^2) \]

\[+ m_h^2 \left[2p^{\{\mu} y^{\nu\}} - \frac{1}{2} g^{\mu\nu} py \right] B_{VV/AA}(py, y^2) \]

\[+ m_h^4 \left[2y^{\mu} y^{\nu} - \frac{1}{2} g^{\mu\nu} y^2 \right] C_{VV/AA}(py, y^2) \]

\[\text{+components} \Rightarrow \mathcal{T} M^p,++_{VV/AA} = 2(p^+)^2 A_{VV/AA}(py, y^2) \]

Relation between Mellin moments and invariant functions, e.g.:

\[M_{q\Delta q\Delta q}(y) = \int d(py) A_{VV/AA}(py, y^2) \]
Consider DPD Mellin moments, start with first moment

\[O_X(y) = \bar{q}(y) \Gamma_X q(y), \text{ no Wilson lines, no derivatives (first moment)} \]

Go to Euclidean space \((y = (y, y^4) \text{ with } y = (y^1, y^2, y^3)), y^4 = iy^0:\)

\[\Rightarrow \text{ operators must be at the same time, } y^4 = 0. \]

For a pilot study start with pion at zero momentum.

\[\Rightarrow \text{ obtain } M_{X_1X_2} = \langle \pi^+(0) | O_{X_1}(0) O_{X_2}(y) | \pi^+(0) \rangle \text{ from the lattice for several channels:} \]

\[\Gamma_X \in \{ 1, \gamma_5, \gamma^\mu, \gamma^\mu\gamma_5, \sigma^{\mu\nu} \} \]

Ground state matrix element:

\[\langle \pi^+ | O_{X_1}(0) O_{X_2}(y) | \pi^+ \rangle = \frac{C^{X_1X_2 4pt}(t, \tau, y)}{2m_{\pi} C^{2pt}(t)} \bigg|_{t \gg \tau \gg 0} \]

with 4pt function \(C^{X_1X_2 4pt}(t, \tau, y) = \langle O^p_{\pi^+}(t) O_{X_1}(0) O_{X_2}(y) O^\dagger_{\pi^+}(0) \rangle \)

and 2pt function \(C^{2pt}(t) = \langle O^p_{\pi^+}(t) O^\dagger_{\pi^+}(0) \rangle \)

Pion interpolators:

\[|\pi^+_p(t)\rangle + \cdots = O^p_{\pi^+}(t)|\Omega\rangle = \frac{1}{V} \sum_x e^{ip \cdot x} \bar{u}(x) \gamma_5 d(x) |\Omega\rangle = O^-_{\pi}(t)|\Omega\rangle \]
Obtain six independent Wick contractions:

\[C1 \]
\[
\pi_p^+(0) \quad O_1(\tau, 0) \quad \pi_p^+(t) \\
\begin{array}{ccc}
 u & u & u \\
 d & d & d \\
\end{array} \\
O_2(\tau, y)
\]

\[C2 \]
\[
\pi_p^+(0) \quad O_1(\tau, 0) \quad \pi_p^+(t) \\
\begin{array}{ccc}
 u & u & u \\
 d & d & d \\
\end{array} \\
O_2(\tau, y)
\]

\[A \]
\[
\pi_p^+(0) \quad O_1(\tau, 0) \quad \pi_p^+(t) \\
\begin{array}{ccc}
 u & u & u \\
 d & d & d \\
\end{array} \\
O_2(\tau, y)
\]

\[D \]
\[
\pi_p^+(0) \quad O_1(\tau, 0) \quad \pi_p^+(t) \\
\begin{array}{ccc}
 u & u & u \\
 d & d & d \\
\end{array} \\
O_2(\tau, y)
\]

Choose \(t = 15a \), expect plateau at \(6a \lesssim \tau \lesssim 9a \)
\[\Rightarrow \text{fit or average} \]
Lattice Setup and Simulation Details

Used gauge ensemble \((N_f = 2)\) Wilson-Clover fermions, c.f. [arXiv:1412.7336]:

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>(\beta)</th>
<th>(a[\text{fm}])</th>
<th>(\kappa)</th>
<th>(V)</th>
<th>(m_\pi[\text{GeV}])</th>
<th>(N(N_{4\text{pt}}))</th>
<th>(N_{\text{sm}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5.29</td>
<td>0.071</td>
<td>0.13632</td>
<td>(40^3 \times 64)</td>
<td>0.2888(11)</td>
<td>2025(984)</td>
<td>400</td>
</tr>
</tbody>
</table>

Renormalization (conversion to \(\overline{\text{MS}} (2\text{GeV})\)) [arXiv:1003.5756]:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>P</th>
<th>V</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z)</td>
<td>0.4577(18)</td>
<td>0.3538(92)</td>
<td>0.7365(48)</td>
<td>0.76487(64)</td>
<td>0.9141(26)</td>
</tr>
<tr>
<td>(Z_{\text{conv}})</td>
<td>1.3543</td>
<td>1.3543</td>
<td>1</td>
<td>1</td>
<td>0.93313</td>
</tr>
</tbody>
</table>

Further Details:

- use stochastic \(\mathbb{Z}_2 \otimes \mathbb{Z}_2\) sources (see e.g. [arXiv:0804.1501]) \(\Rightarrow\) One-End-Trick / Two-Hand-Trick
Results for $M_{SS} (L = 40)$

Results for $M_{PP} (L = 40)$

Results for $M_{V0V0} (L = 40)$

Results for $M_{A0A0} (L = 40)$
Invariant functions $A_{SS}(py = 0, y^2)$ and $A_{VV}(py = 0, y^2)$

PRELIMINARY

Results for $A_{SS}(L = 40)$

Results for $A_{VV}(L = 40)$
Insert complete set of states; assume that the pion states dominate:

$$\langle \pi^+(p) | O_1 O_2 | \pi^+(p) \rangle = \sum_Y \langle \pi^+(p) | O_1 | Y \rangle \langle Y | O_2 | \pi^+(p) \rangle$$

$$\approx \int \frac{d^4p'}{(2\pi)^4} \langle \pi^+(p) | O_1 | \pi^+(p') \rangle \langle \pi^+(p') | O_2 | \pi^+(p) \rangle \delta(p'^2 - m^2_{\pi})$$

Test 1: Factorize $\langle \pi^+(p) | O_{1uu}^{uu}(z_1,0) O_{2dd}^{dd}(z_2,y) | \pi^+(p) \rangle$

\Rightarrow can relate invariant function $A_{X_1 X_2}$ to pion form factors $F_X(t)$:

$$(t(\zeta, r^2) = -\frac{\zeta^2 m^2_{\pi} + r^2}{1 - \zeta}) :$

$$A_{VV/SS}^{VV/SS}(p_y = 0, y^2) \approx \frac{\eta_C^{V/S}}{\pi} \int_0^1 d\zeta \left(1 - \frac{\zeta}{2}\right) \int \frac{d^2r}{(2\pi)^2} e^{-iy \cdot r} F_{V/S}^2(t(\zeta, r^2))$$

Test 2: Factorize local Matrix element ($t(r) = 2m^2 - 2mE_r$) :

$$\langle \pi^+(p) | O_{1uu}^{uu} V_0^0(0) O_{2dd}^{dd} V_0^0(y) | \pi^+(p) \rangle \approx -\frac{1}{4\pi^2 |y|} \int_0^\infty d(r^2) \frac{\sin(|y||r|)(m + E_r)^2}{2E_r} F_V^2(t(r^2))$$

$$\langle \pi^+(p) | O_{Suu}^{uu} S_0^0(0) O_{Sdd}^{dd}(y) | \pi^+(p) \rangle \approx \frac{1}{4\pi^2 |y|} \int_0^\infty d(r^2) \frac{\sin(|y||r|)}{2E_r} F_S^2(t(r^2))$$

Both tests trivially fail for the pseudoscalar and axialvector case, since $F_P = F_A = 0$ for the pion in contrast to our lattice results for 4pt-functions.
The Pion Form Factor

The Pion form factor:

\[F_S(Q^2) = \langle \pi(p + Q) | O_S | \pi(p) \rangle \quad F_V(Q^2)(2p + Q) = \langle \pi(p + Q) | O_V^\mu | \pi(p) \rangle \]

\[\Rightarrow \text{obtain FF from 3pt-functions, at first neglect disconnected contributions} \]

\[\Rightarrow \text{use momenta } |p| \leq \frac{2\pi}{N_S} \sqrt{3} \]

Fit data on the parametrization:

\[F(t) = \frac{F_0}{\left(1 + \frac{t}{M^2}\right)^p}, \quad t = Q^2 \]

For the vector FF can fix \(F_0 = 1 \) (charge conservation)

Fit Result (correlated fit):

<table>
<thead>
<tr>
<th>#</th>
<th>quantity</th>
<th>(F_0)</th>
<th>(M[\text{GeV}])</th>
<th>(p)</th>
<th>(\chi^2/\text{DOF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(F_{em})</td>
<td>1(fixed)</td>
<td>0.777(12)</td>
<td>1(fixed)</td>
<td>6.010</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1(fixed)</td>
<td>0.872(16)</td>
<td>1.173(69)</td>
<td>4.400</td>
</tr>
<tr>
<td>3</td>
<td>(F_{scal})</td>
<td>2.222(19)GeV</td>
<td>1.314(39)</td>
<td>1(fixed)</td>
<td>7.886</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.212(19)GeV</td>
<td>2.023(50)</td>
<td>2(fixed)</td>
<td>9.877</td>
</tr>
</tbody>
</table>
Test 1 for A_{VV}:

- Preliminary

Comparison for A_{VV}^{ud}: 3pt+3pt to 4pt ($L = 40$)

- Good agreement for large distances of the two scattering quarks
- Clear discrepancy for scattering distances smaller than m_{π}^{-1}

\Rightarrow Naive factorization might be a good assumption if the scattering quarks are far apart from each other
Test 2 for $M_{V_4 V_4}$:

PRELIMINARY

No region where the two curves match

\Rightarrow Bad assumption, only order of magnitude is roughly the same for large distances
Factorization Test Results

Test 1 for A_{SS} (PRELIMINARY):

- Test 1: Agreement worse than for A_{VV} (disconnected contributions?)

Test 2 for M_{SS} (PRELIMINARY):

- Test 2: Bad agreement as for M_{V4V4}
Achievements:

- Calculated all 4pt-graphs for the π^+ at $p = 0$
- Good quality of the data (except for S_2 and D)
- Tested naive factorization into convolution of two form factors:
 - Test 1: ok if distances are large
 - Clear deviation for distances smaller than the pion wave length
 - Test 2: worse (order of magnitude correct)
 ⇒ Calculation of two-current matrix elements essential!

To do:

- Get better signals for S_2 and D -graph
- Take derivatives into account
- Go to non-zero momenta
- Investigate other particles: ρ-meson, nucleon (LHC experiments)
Thank you for your attention!
S_2 results:

PRELIMINARY

Results for $M_{PP} (L = 40)$: S_2-graph

Results for $M_{A_4A_4} (L = 40)$: S_2-graph
Depending on the quark flavor of the insertion operators, a certain set of 4pt-graphs must be summed up.

Isovector operators:

\[\mathcal{O}_X^1 = \bar{u}\Gamma_X d + \bar{d}\Gamma_X u \]
\[\mathcal{O}_X^2 = i\bar{u}\Gamma_X d - i\bar{d}\Gamma_X u \]
\[\mathcal{O}_X^3 = \bar{u}\Gamma_X u - \bar{d}\Gamma_X d \]

Matrix Elements in terms of 4pt-graphs:

\[\langle \pi^+ | \mathcal{O}_X^1 \mathcal{O}_X^1 | \pi^+ \rangle = \langle \pi^+ | \mathcal{O}_X^2 \mathcal{O}_X^2 | \pi^+ \rangle \sim 4C_2^{X_1X_2} - 2A^{X_1X_2} - 2S_2^{X_1X_2} \]
\[\langle \pi^+ | \mathcal{O}_X^3 \mathcal{O}_X^3 | \pi^+ \rangle \sim 4C_2^{X_1X_2} - 2C_1^{X_1X_2} - 2S_2^{X_1X_2} \]

Neglect contributions of \(S_2 \).
Isospin Matrix Elements: Results

Preliminary

Results for $M^{ii} = \langle \pi^{+}|\mathcal{O}^{i}(0)\mathcal{O}^{i}(y)|\pi^{+}\rangle$ ($L = 40$, $i = 1, 2$)

Double Parton Distributions
Isospin Matrix Elements: Results

PRELIMINARY

Results for $M^{33} = \langle \pi^+ | O^3(0) O^3(y) | \pi^+ \rangle$ ($L = 40$)

Results for $M^{33} = \langle \pi^+ | O^3(0) O^3(y) | \pi^+ \rangle$ ($L = 40$)