QCD with Flavored Minimally Doubled Fermions

J. H. Weber¹

¹Physik Department, Technische Universität München, Garching,

34th International Symposium on Lattice Field Theory, University of Southampton, UK, 07/25/2016

preliminary work!

Minimally Doubled Fermions (MDF) are characterized by ...

- a standard chiral symmetry for finite $a \Rightarrow no \mathcal{O}(am)$ corrections!
- an ultra-local (only next-neighbor interactions) Dirac operator ⇒ fast!
- a pair of chiral fermions (cf. N.-N. theorem [H. Nielsen, M. Ninomiya 1981]) ⇒ even number of flavors, spectral doubling, taste breaking!
- broken hyper-cubic symmetry ⇒ anisotropic mixing & counterterms!
- violation of symmetry under charge conjugation and some reflection!

Outline

Introduction Introduction & Overview

- Overview & introduction
- Minimally Doubled Fermions (MDF) with flavor
- QCD vacuum with (flavored) Minimally Doubled Fermions
- Flavored mesons with (flavored) Minimally Doubled Fermions
- Summary

Flavored Minimally Doubled Fermions

Flavored Minimally Doubled Fermion action

• **Degenerate** MDF Dirac operator is derived from KW Fermions

$$\widehat{D} = \widehat{D}^N + m_0 + r\widehat{D}^W + 3r\widehat{D}^3$$

• Operators due to Karsten-Wilczek term (Wilczek parameter $r, r^2 > \frac{1}{4}$)

$$\widehat{D}^W = -\frac{i}{a_{\tau}} \gamma_0 \left(3 + a_{\sigma}^2 \boldsymbol{D} \cdot \boldsymbol{D}^* \right), \quad \widehat{D}^3 = \frac{i}{a_{\tau}} \gamma_0$$

• Karsten-Wilczek term in momentum space

$$\widehat{D}^W = -rac{i}{a_{ au}}\gamma_0\sum_{j=1}^3\cos(a_{\sigma}k_j)$$

Minimal number of doublers

$$\widehat{D}^{W} = \frac{1}{a_{\tau}} \begin{cases} -3 & k_{j} = 0 \ \forall j \\ +3 & k_{j} = \frac{\pi}{a_{\sigma}} \ \forall j \\ \pm 1 & \text{other Fermi points} \end{cases}$$

Flavored Minimally Doubled Fermion action

• Degenerate MDF Dirac operator is derived from KW Fermions

$$\widehat{D} = \widehat{D}^N + m_0 + r\widehat{D}^W + (3r + c_3)\widehat{D}^3 + d_4\widehat{D}^4$$

• Operators due to Karsten-Wilczek term (Wilczek parameter $r, r^2 > \frac{1}{4}$)

$$\widehat{D}^W = -\frac{i}{a_\tau} \gamma_0 \left(3 + a_\sigma^2 \boldsymbol{D} \cdot \boldsymbol{D}^* \right), \quad \widehat{D}^3 = \frac{i}{a_\tau} \gamma_0, \quad \widehat{D}^4 = D_0 \gamma_0$$

• The MDF action is combined with Wilson gauge action

$$S^{g}[U] = \sum_{m} \beta_{\sigma} \sum_{j < k} \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} \left(\mathbf{1} - U_{m}^{jk} \right) + \beta_{\tau} (1 + d_{\rho}) \sum_{j} \frac{1}{N_{c}} \operatorname{Re} \operatorname{tr} \left(\mathbf{1} - U_{m}^{j0} \right)$$

• Coefficients are known [S. Capitani, M. Creutz, H. Wittig, JHW, 2010; JHW, 2015]

$$\begin{array}{|c|c|c|c|c|c|}\hline & d_4^{1L}/g_0^2 & d_p^{1L}/g_0^2 & c_3^{1L}/g_0^2 & c_3^{\text{np}} \\ \hline & -0.00106 & -0.0893 & -0.249 & \frac{c_3^{1L}+n_2g_0^4}{1+d_1g_0^2} \left\{ \begin{array}{c} n_2 = 0.216(1) \\ d_1 = -0.926(2) \end{array} \right. \\ \hline \end{array}$$

 d_4 and d_p are even functions of r, c_3 is an odd function of r

Flavored Minimally Doubled Fermion action

MDF Dirac operator is derived from KW Fermions Flavored

$$\widehat{D} = \widehat{D}^N + m_0 + r\widehat{D}^W + (3r + c_3)\widehat{D}^3 + d_4\widehat{D}^4 + m_3\widehat{M}$$

• Operators due to Karsten-Wilczek term (Wilczek parameter $r, r^2 > \frac{1}{4}$)

$$\widehat{D}^W = -\frac{i}{a_{\tau}} \gamma_0 \left(3 + a_{\sigma}^2 \boldsymbol{D} \cdot \boldsymbol{D}^* \right), \quad \widehat{D}^3 = \frac{i}{a_{\tau}} \gamma_0, \quad \widehat{D}^4 = D_0 \gamma_0$$

• Flavor symmetry is broken by a second mass operator, i.e.

$$\widehat{\pmb{M}} = \left(1 + \pmb{a}_{ au}^2 m{D}_0 D_0^*
ight)$$

- Alternative form: $\widehat{\mathcal{M}} = (1 + a_{\tau}^2 D_0 D_0^*) (3 + a_{\sigma}^2 D \cdot D^*)$
- MDF action invariant under parity transform $\widehat{\mathcal{P}}$ and cubic group (W_3)
- Invariance: **joint** charge conjugation $(\widehat{\mathcal{C}})$ /time reflection $(\widehat{\mathcal{T}})$
- Standard chiral symmetry ($\hat{\chi} = \gamma_5$) in the chiral limit ($m_3 = m_0 = 0$)

- Wanted: su(2) algebra, where one generator leaves $m_3\widehat{M}$ invariant
- Construct su(2) algebra from three different shift transforms

$$egin{align} \widehat{\lambda} &= \gamma_0 (-1)^{n_\sigma}, \quad n_\sigma = \sum_{j=1}^3 n_j, \ \widehat{ au} &= i \gamma_0 \gamma_5 (-1)^{n_0}, \ \widehat{artheta} &= \gamma_5 (-1)^{ar{n}}, \quad ar{n} = \sum_{\mu=0}^3 n_\mu \ \end{aligned}$$

Representation of su(2) algebra

$$\left(\begin{array}{c} \widehat{\lambda} \\ \widehat{\tau} \\ \widehat{\vartheta} \end{array}\right) = \left(\begin{array}{c} \sigma^1 \times (-1)^{n_\sigma} \\ \sigma^2 \times (-1)^{n_0} \\ \sigma^3 \times (-1)^{\overline{n}} \end{array}\right) \otimes \mathbf{1}_{2 \times 2}$$

Commutator relations $[\widehat{\lambda}, \widehat{\tau}] = 2i\widehat{\vartheta}, \quad [\widehat{\tau}, \widehat{\vartheta}] = 2i\widehat{\lambda}, \quad [\widehat{\vartheta}, \widehat{\lambda}] = 2i\widehat{\tau}$

Broken symmetries for flavored Minimally Doubled Fermions

• Redefine parameters

$$a = a_{\sigma}, \quad \xi = \frac{a_{\sigma}}{a_{\tau}} (1 + d_4), \quad \xi_{\beta} = \frac{\beta_{\tau}}{\beta_{\sigma}} (1 + d_p),$$
 $m_3^{\mathrm{old}} \to m_3^{\mathrm{new}} = \frac{\xi m_3^{\mathrm{old}}}{1 + d_4}, \quad r^{\mathrm{old}} \to r^{\mathrm{new}} = \frac{\xi r^{\mathrm{old}}}{1 + d_4}, \quad \rho = \frac{\xi r^{\mathrm{old}}}{1 + d_4} (3 + \frac{c_3}{r^{\mathrm{old}}}),$

collect in **multi-index** $\kappa = \{m_0, m_3, r, \rho, \xi; \beta, \xi_\beta\}$

Regroup operators wrt. behavior under broken discrete symmetries

$$\widehat{X} = \widehat{D}^N + d_4 \widehat{D}^4 = \sum_{i=1}^3 D_i \gamma_i + \xi D_0 \gamma_0, \quad \widehat{Y} = \widehat{D}^3, \quad \widehat{Z} = \widehat{D}^W$$

 \bullet $\operatorname{Introduce}$ signs $\{\textbf{s},\textbf{x},\textbf{y},\textbf{z}\}=\pm 1$ to capture common symmetry patterns

$$\widehat{D}_{\kappa_{\mathrm{s},\mathrm{x},\mathrm{y},\mathrm{z}}}[U] = \ \widehat{X}[U] + \times m_0 \ + \mathrm{szr}\widehat{Z}[U] + \mathrm{sy}\rho \, \widehat{Y} + \times \mathrm{y} \, m_3 \widehat{M}[U]$$

Operator mixing due to broken symmetries restricted in loop functions!

QCD vacuum with flavored MDF

- Physically 'most relevant' loop function: quark determinant det $D_{\kappa_{s,x,y,z}}$
- Role model: Wilson twisted mass fermions at maximal twist

$$\widehat{D}^{\mathrm{tm}} = \widehat{D}^{N} - \frac{r}{a}i\gamma_{5}\left(a^{2}\sum_{\mu=0}^{3}D_{\mu}D_{\mu}^{*} + (am_{cr})\right) + m_{0}$$

three operators transform differently under two transforms: $\widehat{\chi}$ and $\widehat{\mathcal{P}}$

- \Rightarrow parity is a symmetry of the vacuum, no $\mathcal{O}(a)$ corrections to vacuum
 - Plan: invoke the symmetry constraints for MDF quark determinant
- \Rightarrow analytically calculate dependence of $\det D_{\kappa_{s,x,y,z}}$ on $\{s,x,y,z\}$,
- ⇒ derive properties of the (non-perturbative) vacuum

Eigenvalue equations

• **Eigenvalue equations** of the MDF Dirac operator

$$\bar{\phi}_{\omega}^{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}\widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}\phi_{\omega}^{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}=\omega_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}$$

A priori, $\phi_{\omega}^{\kappa_{s,x,y,z}}$ and $\omega_{\kappa_{c,x,y,z}}$ depend on all parameters $\kappa_{s,x,y,z}$.

- Prototype: γ_5 hermiticity \Rightarrow reality & positivity of determinant, eigenvalues in complex conjugate pairs: $\omega_{\kappa_{s,x,y,z}} \Leftrightarrow \omega_{\kappa_{s,x,y,z}}^*$
- Chiral symmetry & positivity $\Rightarrow |\omega_{\kappa_{++}}|^2 = |\omega_{\kappa_{-+}}|^2$
- su(2) algebra $(\hat{\lambda} \text{ resp. } \hat{\vartheta}) \Rightarrow \omega_{\kappa_{+v,+z}} = \omega_{\kappa_{-v,+z}} = \omega_{\kappa_{+v,-z}}$

$$\Rightarrow \det \widehat{D}_{\kappa_{s,x,y,z}} = d[m_0^2, m_3^2, r^2, \rho^2, s\rho m_3 m_0; \xi; \beta, \xi_{\beta}]$$

Invariance of the vacuum under all discrete symmetries is demonstrated for $m_3 = 0$ or $m_0 = 0$. Arbitrary quark masses require one further step...

• Transform with $\widehat{\mathcal{C}}$: cancel sign s (\Rightarrow averaging quarks and antiquarks)

$$\omega_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \underbrace{\bar{\phi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}[U]\hat{\mathcal{C}}}_{=-(\phi^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}[U])^T} \underbrace{\hat{\mathcal{C}}\hat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}[U]\hat{\mathcal{C}}}_{=(\widehat{D}_{\kappa_{-\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}[U])^T} \underbrace{\hat{\mathcal{C}}\phi_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}[U]}_{=(\widehat{\phi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}[U])^T} = \underbrace{(\bar{\phi}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}[U])^T}_{=(\bar{\phi}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}[U])^T} = \omega_{\kappa_{-\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}$$
same spectrum for $\Rightarrow \widehat{D}_{\kappa_{-\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}$ and $\widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\mathsf{c}}$ (but different eigenvectors)

• Eigenvalues depend only on $\times: \omega_{\kappa_{s,x,y,z}} \equiv \omega_{\kappa_x} \& |\omega_{\kappa_x}|^2 \equiv \Omega_{\kappa}$

$$\det \widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \prod_{0 \leq \arg(\omega_{\kappa_{\mathsf{x}}}) < \pi} \Omega_{\kappa} = d[m_0^2, m_3^2, r^2, \rho^2; \xi; \beta, \xi_{\beta}] \geq 0$$

Invariance of the MDF quark determinant under all discrete symmetries is manifest for arbitrary bare parameters and for arbitrary gauge fields.

Invariance of the quark determinant implies invariance of the vacuum.

- If the counterterm coefficients are tuned non-perturbatively, the quark determinant's leading cutoff effects are of $\mathcal{O}(a^2)$.
- \Rightarrow The QCD vacuum with Minimally Doubled Fermions receives no $\mathcal{O}(a)$ corrections and is an even function of the two bare quark masses.
 - NB: Another flavored MDF field does not alter the symmetries.
 - NB: $\det \widehat{D}_{\kappa_{s,x,v,z}}$ is an even function of ξ , which follows directly from its m_3^2 dependence and a hopping parameter expansion.
 - NB: $\det \widehat{D}_{\kappa_{s,x,y,z}}$ does not have to be an even function of the counterterm coefficients c_3 and d_4 .

The QCD vacuum is fully ignorant of $\{s, x, y, z\}$. Hence, valence quarks with different choices for $\{s, x, y, z\}$ have exactly the same QCD vacuum.

Generalized even-odd structure of quark propagators

- Introduce su(2) projectors $\widehat{P}_{\tau}^{\pm} = \frac{1}{2} (1 \pm \widehat{\tau})$
- \rightarrow Sort quark matrix and propagator by \widehat{P}_{τ}^{\pm} even-odd structures

$$\begin{split} \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \widehat{E} + \widehat{\mathcal{O}}, \qquad \widehat{E} = \widehat{X} + \mathbf{x} m_0, \quad \widehat{\mathcal{O}} = \mathbf{x} \mathbf{y} m_3 \widehat{M} + \mathbf{s} \mathbf{y} \rho \widehat{Y} + \mathbf{s} \mathbf{z} \mathbf{r} \widehat{Z} \\ \widehat{S}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \widehat{S}^E + \widehat{S}^{\mathcal{O}}, \quad \widehat{S}^E = \left(\widehat{E} - \widehat{\mathcal{O}}\widehat{E}^{-1}\widehat{\mathcal{O}}\right)^{-1}, \quad \widehat{S}^{\mathcal{O}} = -\widehat{S}^E \widehat{\mathcal{O}}\widehat{E}^{-1} \end{split}$$

- Introduce charge conjugation projectors $\widehat{P}_{\mathcal{C}}^{\pm} = \frac{1}{2} \left(\mathbf{1} \pm \widehat{\mathcal{C}} \right)$,
- \rightarrow Sort quark matrix and propagator by $\widehat{P}_{\mathcal{C}}^{\pm}$ even-odd structures

$$\begin{split} \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \widehat{\eta} + \mathbf{s} \widehat{\omega}, \qquad \widehat{\eta} = \widehat{X} + \mathbf{x} m_0 + \mathbf{x} \mathbf{y} m_3 \widehat{M}, \qquad \widehat{\omega} = \mathbf{y} \rho \widehat{Y} + \mathbf{z} \mathbf{r} \widehat{Z}, \\ \widehat{S}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \widehat{S}^{\eta} + \mathbf{s} \widehat{S}^{\omega}, \quad \widehat{S}^{\eta} = \left(\widehat{\eta} - \widehat{\omega} \widehat{\eta}^{-1} \widehat{\omega}\right)^{-1}, \quad \widehat{S}^{\omega} = -\widehat{S}^{\eta} \widehat{\omega} \widehat{\eta}^{-1} \end{split}$$

 $\widehat{\mathcal{C}}$ -odd structures due to Karsten-Wilczek term: $\widehat{\omega}$, $\widehat{S}^{\omega} \sim \mathcal{O}(a)$

Nested even-odd structure for different broken discrete symmetries

$$\widehat{S}_{\kappa_{S,X,V,Z}} = \widehat{S}^{\eta E} + m_3 \widehat{S}^{\eta O} + s m_3 \widehat{S}^{\omega E} + s \widehat{S}^{\omega O}$$

linear dependence on flavor non-singlet mass parameter m_3 exposed

Generic meson correlation functions

• Meson two-point function has quark-disconnected & -connected parts

$$C_{\widehat{\Gamma}_{a},\widehat{\Gamma}_{b}}(n_{0}) = \sum_{n} \left[\left\langle \left(\overline{\psi}_{0} \widehat{\Gamma}_{a} \psi_{0} \right) \left(\overline{\psi}_{n} \widehat{\Gamma}_{b} \psi_{n} \right) \right\rangle \right]_{U}$$

$$= \sum_{n} \left[\left\langle \widehat{S}_{0,0} \widehat{\Gamma}_{a} \right\rangle \left\langle \widehat{S}_{n,n} \widehat{\Gamma}_{b} \right\rangle \right]_{U} - \left[\left\langle \widehat{S}_{n,0} \widehat{\Gamma}_{a} \widehat{S}_{0,n} \widehat{\Gamma}_{b} \right\rangle \right]_{U}$$

$$\Big[\dots\Big]_U \, \to \, \text{gauge average}, \, \Big\langle\dots\Big\rangle \, \to \, \text{combined Dirac and color trace}$$

• Sort kernels $\widehat{\Gamma}_{a,b}$ of the interpolating operators by symmetries, e.g.

$$\{\widehat{\Gamma}^{\eta}\} = \{\mathbf{1}, \gamma_5, i\gamma_{\mu}\gamma_5\}, \qquad \{\widehat{\Gamma}^{\omega}\} = \{\gamma_{\mu}, i\gamma_{\mu}\gamma_{\nu}\}, \quad \text{point-split operators}$$

• Quark propagators are linked to kernels through even-odd structures

$$\left\langle \widehat{S}\widehat{\varGamma}_{a}\right\rangle \!=\! \left\langle \widehat{S}^{\eta}\widehat{\varGamma}_{a}^{\eta} \!+\! \mathsf{s}\widehat{S}^{\omega}\widehat{\varGamma}_{a}^{\omega}\right\rangle \!=\! \left\langle \widehat{S}^{\eta}\widehat{\varGamma}_{a}^{\eta}\right\rangle \!+\! \mathsf{s}\left\langle \widehat{S}^{\omega}\widehat{\varGamma}_{a}^{\omega}\right\rangle$$

- Terms \propto s vanish for sufficiently symmetric $\widehat{\Gamma}_{a,b} \Rightarrow \mathbf{no} \ \widehat{\mathcal{C}}$ or $\widehat{\mathcal{T}}$ violation
- Vacuum is ignorant of $s = \pm 1 \Rightarrow \text{may average } s = \pm 1$ in valence sector

Mesons with MDF

Nested \widehat{P}_{τ}^{\pm} and $\widehat{P}_{\mathcal{C}}^{\pm}$ projections

- Apply $\widehat{P}_{\mathcal{C}}^{\pm}$ projections \longrightarrow average $\pm s \longrightarrow$ apply $\widehat{P}_{\mathcal{T}}^{\pm}$ projections
- Quark-disconnected contribution (propagators intertwined with $\widehat{\Gamma}_{a,b}$):

$$\begin{split} C_{\widehat{\varGamma}_{a},\widehat{\varGamma}_{b}}^{\mathrm{disc}}(n_{0}) &= \sum_{n} \left[\left\langle \widehat{S}_{0,0}^{\eta E} \widehat{\varGamma}_{a}^{\eta E} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta E} \widehat{\varGamma}_{b}^{\eta E} \right\rangle + \left\langle \widehat{S}_{0,0}^{\omega \mathcal{O}} \widehat{\varGamma}_{a}^{\omega \mathcal{O}} \right\rangle \left\langle \widehat{S}_{n,n}^{\omega \mathcal{O}} \widehat{\varGamma}_{b}^{\omega \mathcal{O}} \right\rangle \right]_{U} \\ &+ m_{3}^{2} \left[\left\langle \widehat{S}_{0,0}^{\eta \mathcal{O}} \widehat{\varGamma}_{a}^{\eta \mathcal{O}} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta \mathcal{O}} \widehat{\varGamma}_{b}^{\eta \mathcal{O}} \right\rangle + \left\langle \widehat{S}_{0,0}^{\omega E} \widehat{\varGamma}_{a}^{\omega E} \right\rangle \left\langle \widehat{S}_{n,n}^{\omega E} \widehat{\varGamma}_{b}^{\omega E} \right\rangle \right]_{U} \end{split}$$

• Quark-connected contribution (same pattern for any symmetric $\widehat{\Gamma}_{a,b}^{S}$)

$$C_{\widehat{\Gamma}_{a}^{S},\widehat{\Gamma}_{b}^{S}}^{\text{con}}(n_{0}) = -\sum_{n} \left[\left\langle \widehat{S}_{n,0}^{\eta E} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{\eta E} \widehat{\Gamma}_{b}^{S} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega O} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{\omega O} \widehat{\Gamma}_{b}^{S} \right\rangle \right]_{U} \\ + m_{3}^{2} \left[\left\langle \widehat{S}_{n,0}^{\eta O} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{\eta O} \widehat{\Gamma}_{b}^{S} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega E} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{\omega E} \widehat{\Gamma}_{b}^{S} \right\rangle \right]_{U}$$

Parity partners

• Quark-connected correlation functions for MDF receive contributions from **parity partners** (same as for Kogut-Susskind Fermions)

$$C_{\widehat{\Gamma}_{a}^{S},\widehat{\Gamma}_{b}^{S}}^{\text{con}}(n_{0}) = -\sum_{n} \left[\left\langle \widehat{S}_{n,0}^{E} \widehat{\tau}^{2} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{E} \widehat{\Gamma}_{b}^{S} \right\rangle + \left\langle \widehat{S}_{n,0}^{O} \widehat{\tau}^{2} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{O} \widehat{\Gamma}_{b}^{S} \right\rangle \right]_{U}$$

$$= -\sum_{n} \left[\left\langle \widehat{S}_{n,0}^{E} \tau_{0} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{E} \widehat{\Gamma}_{b}^{S} \tau_{n_{0}} \right\rangle - \left\langle \widehat{S}_{n,0}^{O} \tau_{0} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{O} \widehat{\Gamma}_{b}^{S} \tau_{n_{0}} \right\rangle \right]_{U}$$

where $\tau_{n_0} = i\gamma_0\gamma_5(-1)^{n_0}$ is the matrix of the **temporal shift transform**

• States with opposite parities in quark-connected correlation functions

$$\begin{split} C_{\widehat{\Gamma}_{a}^{S},\widehat{\Gamma}_{b}^{S}}^{\text{con}}(n_{0}) &= -\frac{1}{2} \sum_{n} \left\langle \left\langle \widehat{S}_{n,0}^{E} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{E} \widehat{\Gamma}_{b}^{S} \right\rangle^{s} + \left\langle \widehat{S}_{n,0}^{O} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{O} \widehat{\Gamma}_{b}^{S} \right\rangle^{s} \right\rangle_{U} \\ &+ (-1)^{n_{0}} \left\langle \left\langle \widehat{S}_{n,0}^{E} \tau_{0} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{E} \widehat{\Gamma}_{b}^{S} \tau_{0} \right\rangle^{s} - \left\langle \widehat{S}_{n,0}^{O} \tau_{0} \widehat{\Gamma}_{a}^{S} \widehat{S}_{0,n}^{O} \widehat{\Gamma}_{b}^{S} \tau_{0} \right\rangle^{s} \right\rangle_{U} \end{split}$$

- the parity partner has different cutoff effects 'taste breaking'
- Trade taste breaking between partners by $+s \rightarrow -s$ on one propagator

Mesons with MDF

Pseudoscalar spectrum

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma}_5, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\widehat{\Gamma}^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\widehat{\Gamma}^{\eta O}\}, \quad \gamma_0 \in \{\widehat{\Gamma}^{\omega O}\}$$

 $\widehat{\gamma}_5$ -channel:

$$\begin{split} C_{\widehat{\gamma_5},\widehat{\gamma_5}}(n_0) &= C_{\widehat{\gamma_5},\widehat{\gamma_5}}^{\text{con}}(n_0) + C_{\widehat{\gamma_5},\widehat{\gamma_5}}^{\text{disc}}(n_0) \\ &= -\frac{1}{2} \sum_{\boldsymbol{n}} \left[\left\langle \widehat{S}_{n,0}^{\eta E} \widehat{\gamma_5} \widehat{S}_{0,n}^{\eta E} \widehat{\gamma_5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega O} \widehat{\gamma_5} \widehat{S}_{0,n}^{\omega O} \widehat{\gamma_5} \right\rangle \right]_{\boldsymbol{U}} \\ &+ m_3^2 \left[\left\langle \widehat{S}_{n,0}^{\eta O} \widehat{\gamma_5} \widehat{S}_{0,n}^{\eta O} \widehat{\gamma_5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega E} \widehat{\gamma_5} \widehat{S}_{0,n}^{\omega E} \widehat{\gamma_5} \right\rangle \right]_{\boldsymbol{U}} \\ &+ \sum_{\boldsymbol{n}} m_3^2 \left[\left\langle \widehat{S}_{0,0}^{\eta O} \widehat{\gamma_5} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta O} \widehat{\gamma_5} \right\rangle \right]_{\boldsymbol{U}} \end{split}$$

- Quark-disconnected part at leading order $\mathcal{O}(m_3^2)$, zero in isospin limit
- Compare with e.g. SU(2) ChPT @ NLO [J. Gasser, H. Leutwyler, 1984]

$$I_7 \langle \chi_- \rangle^2 = I_7 \left[2B_0 (m_d - m_u) \right]^2 \langle \tau^3 \text{Im } U \rangle^2$$

• Characteristic quark-disconnected term \Rightarrow ground state is neutral pion

Pseudoscalar spectrum

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma}_5, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\widehat{\varGamma}^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\widehat{\varGamma}^{\eta O}\}, \quad \gamma_0 \in \{\widehat{\varGamma}^{\omega O}\}$$

Other spin-0 channels:

- γ_0 & 1-channels: pseudoscalar parity partners, opposite sign of m_3^2 in connected part, no quark-disconnected contribution ⇒ taste-broken charged pion states
- $i\gamma_0\gamma_5$ -channel: quark-disconnected part due to $\widehat{S}^{\eta E}$ persists in chiral & continuum limits, same sign of m_3^2 in connected part as $\hat{\gamma}_5$ -channel \Rightarrow flavor singlet \leftrightarrow eta meson
- NB: scalars are found in 1- and $i\gamma_0\gamma_5$ -channels, the latter as taste-broken parity partner

Summary

- Constructed a flavored Minimally Doubled Fermion action
- Broken symmetries and su(2) algebra are manifest at finite cutoff
- MDF quark determinant is ignorant of broken discrete symmetries for arbitrary gauge fields and arbitrary bare parameters
- QCD vacuum is invariant under charge conjugation and time reflection and receives no $\mathcal{O}(a)$ corrections
- Quark propagators are even-odd decomposable wrt. symmetries; decompositions for various discrete symmetries can be nested
- Flavored meson propagators distinguished unambiguously by dependence on flavor non-singlet quark mass m_3 and in terms of (non-)existence and nature of quark-disconnected contributions
- Taste breaking avertible by simple means, no fine tuning

Summary

Backup slides

A brief history of Minimally Doubled Fermions so far

- \bullet Minimally Doubled Fermions suggested in early 80s [l.h. Karsten, 1981]
- Anisotropic patterns for Karsten-Wilczek Fermions [F. Wilczek, 1987]
- Spatial MDF, mirror fermion symmetry [M. Pernici, 1995]
- MDF Revival: Boriçi-Creutz Fermions [M. Creutz, A. Boriçi, 2007/08]
- Symmetries of MDF [P. Bedaque, M. Buchoff, B. Tiburzi, A. Walker-Loud, 2008]
- Renormalization of MDF [S. Capitani, H. Wittig, JHW, 2009/10]
- Flavor interpretation, axial anomaly with KWF [B. Tiburzi, 2010]
- Index Theorem with MDF [T. Kimura, M. Creutz, T. Misumi 2010]
- Numerical Studies of MDF (quenched) [S. Capitani, H. Wittig, JHW, 2014]
- Correlation functions with KWF (quenched): oscillations, parity partners, taste breaking, continuum limit [Jhw, 2015]

Pernici's mirror fermion symmetry

• Degenerate MDF have mirror fermion symmetry [M. Pernici, 1995]

$$\widehat{D}^W \stackrel{\widehat{\mathcal{T}}\widehat{\tau}}{\rightarrow} \widehat{D}^W, \quad \widehat{D}^3 \stackrel{\widehat{\mathcal{T}}\widehat{\tau}}{\rightarrow} \widehat{D}^3$$

Form-invariance of action: combined reflection & shift transform

• Shift transform can be defined with shift operator $\hat{\tau}$

$$\bar{\psi} \to \bar{\psi}\hat{\tau}, \quad \psi \to \hat{\tau}\psi, \quad \hat{\tau} \equiv \tau_{m,n} = \tau_{n_0}\delta_{m,n}, \quad \tau_{n_0} = i\gamma_0\gamma_5(-1)^{n_0}$$

- \bullet Flavored MDF: mirror fermion symmetry is broken by $m_3\widehat{M} \to -m_3\widehat{M}$
- $\bar{\psi}m_3\widehat{M}\psi$ has a continuum limit treat as flavor non-singlet mass term

Quark modes for flavored Minimally Doubled Fermions (tree level)

- Exactly two non-degenerate quark modes in the continuum limit
- su(2) generators of $(\widehat{\lambda}, \widehat{\tau}, \widehat{\vartheta})$ swap between pairs of fermion modes
- Charge conjugation/time reflection invert the sign of the energy shift

Broken discrete symmetries for flavored Minimally Doubled Fermions

$$\widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}[U] = \widehat{X}[U] + \mathsf{x} m_0 + \mathsf{sz} r \widehat{Z}[U] + \mathsf{sy} \rho \widehat{Y} + \mathsf{xy} m_3 \widehat{M}[U]$$

Transform	Effect	Â	\widehat{Y}	Ê	$\widehat{1}$	<i>M</i>	U^0	U^{σ}
$\widehat{\chi}$	$ar{\psi}\gamma_5\widehat{A}\gamma_5\psi$	$-\widehat{X}$	$-\widehat{Y}$	$-\widehat{Z}$	$+\widehat{1}$	$+\widehat{M}$	$+U^0$	$+U^{\sigma}$
$\widehat{ au}$	$ar{\psi}\widehat{ au}\widehat{A}\widehat{ au}\psi$	$+\widehat{X}$	$-\widehat{Y}$	$-\widehat{Z}$	$+\widehat{1}$	$-\widehat{M}$	$+U^0$	$+U^{\sigma}$
$\widehat{\lambda}$	$ar{\psi}\widehat{\lambda}\widehat{A}\widehat{\lambda}\psi$	$+\widehat{X}$	$-\widehat{Y}$	$+\widehat{Z}$	$+\widehat{1}$	$-\widehat{M}$	$+U^0$	$+U^{\sigma}$
$\widehat{artheta}$	$ar{\psi}\widehat{artheta}\widehat{A}\widehat{artheta}\psi$	$+\widehat{X}$	$+\widehat{Y}$	$-\widehat{Z}$	$+\widehat{1}$	$+\widehat{M}$	$+U^0$	$+U^{\sigma}$
$\widehat{\mathcal{C}}$	$ar{\psi}\widehat{\mathcal{C}}\widehat{A}\widehat{\mathcal{C}}\psi$	\widehat{X}^T	$-\widehat{Y}^T$	$-\widehat{Z}^T$	$+\widehat{1}^{T}$	$+\widehat{M}^T$	$+U^{0*}$	$+U^{\sigma*}$
$\widehat{\mathcal{T}}$	$ar{\psi}\widehat{\mathcal{T}}\widehat{A}\widehat{\mathcal{T}}\psi$	$+\widehat{X}$	$-\widehat{Y}$	$-\widehat{Z}$	$+\widehat{1}$	$+\widehat{M}$	$-U^{0\dagger}$	$+U^{\sigma}$
$\widehat{\mathcal{P}}$	$ar{\psi}\widehat{\mathcal{P}}\widehat{A}\widehat{\mathcal{P}}\psi$	$+\widehat{X}$	$+\widehat{Y}$	$+\widehat{Z}$	$+\widehat{1}$	$+\widehat{M}$	$+U^0$	$-U^{\sigma\dagger}$

- Four out of five independent symmetry transforms are broken for MDF
- Operator mixing due to broken symmetries restricted in loop functions!

Quark determinant in the free theory

- Momentum modes decouple, det $D_{\kappa_{s,x,y,z}}$ is explicitly calculable
- \bullet Factor out imaginary factors and $\mathrm{GL}(4,\mathbb{C})$ matrices

$$\begin{split} \widehat{X} &= i \sum_{\mu} X_{\mu} \gamma_{\mu}, \quad \widehat{Z} = i Z \gamma_{0}, \quad \widehat{Y} = i Y \gamma_{0}, \quad \widehat{M} = M \\ X_{0} &= \frac{\xi}{a} \sin(\xi a k_{0}), \quad X_{j} = \frac{1}{a} \sin(a k_{j}), \quad M = \cos(\xi a k_{0}), \\ Y &= \frac{1}{a}, \quad Z = \frac{1}{a} \sum_{j=1}^{3} \cos(a k_{j}). \end{split}$$

• The integrand is a real, scalar function for each momentum mode

$$\Delta_{\kappa_{s,x,y,z}} = \Delta_{\kappa_{s,y,z}} = \left[\left(\left\{ X_0 + s(y\rho Y + zrZ) \right\}^2 + X^2 \right) + (m_0 + ym_3M)^2 \right]^2$$

 \bullet Infinite volume, absorb lattice spacing $k_j \to k_j' = a k_j, \; k_0 \to k_0' = \xi a k_0$

$$\det \widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \int\limits_{-\pi}^{+\pi} rac{d^4k}{(2\pi)^4} \ \varDelta_{\kappa_{\mathsf{s},\mathsf{y},\mathsf{z}}}(k),$$

Origin of the symmetry of the quark determinant

• The integrand breaks the symmetries explicitly, depends on $\{s, y, z\}$:

$$\begin{split} \Delta_{\kappa_{\mathsf{s},\mathsf{y},\mathsf{z}}} &= \left[\mathsf{X}^2 + \mu_+ + \epsilon_+ \right]^2 + \mathsf{4} \mathsf{X}_0^2 \epsilon_+ + \mathsf{4} \mu_-^2 + \mathsf{4} \epsilon_-^2 \\ &+ 4 \left[\mathsf{X}^2 + \mu_+ + \epsilon_+ \right] \left[\mathsf{s} \mathsf{X}_0 \sqrt{\epsilon_+ + 2 \mathsf{y} \mathsf{z} \epsilon_-} + \mathsf{y} \left(\mathsf{z} \epsilon_- + \mu_- \right) \right] \\ &+ 8 \left[\mathsf{s} \mathsf{y} \mathsf{X}_0 \sqrt{\epsilon_+ + 2 \mathsf{y} \mathsf{z} \epsilon_-} \left(\mathsf{z} \epsilon_- + \mu_- \right) + \mathsf{z} \epsilon_- \left(\mathsf{y} \mathsf{X}_0^2 + \mu_- \right) \right) \right]. \end{split}$$

where signs $\{s, y, z\}$ have been factored out from

$$\mu_{+} = m_{0}^{2} + (m_{3}M)^{2} \ge 0,$$
 $\mu_{-} = m_{0}m_{3}M,$
 $\epsilon_{+} = \rho^{2}Y^{2} + r^{2}Z^{2} \ge 0,$ $\epsilon_{-} = \rho r Y Z$

• Any terms with signs $\{s, y, z\}$ attached contain **odd powers** of $\cos k_{\mu}$ or $\sin k_{\mu}$ for some direction \Rightarrow **symmetries restored upon integration**.

$$\det \widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = d(m_0^2, m_3^2, r^2)$$

Backup slides

Origin of the symmetry of the quark determinant

• The integrand breaks the symmetries explicitly, depends on $\{s, y, z\}$:

$$\begin{split} \Delta_{\kappa_{\mathsf{s},\mathsf{y},\mathsf{z}}} &= \left[\mathsf{X}^2 + \mu_+ + \epsilon_+ \right]^2 + \mathsf{4} \mathsf{X}_0^2 \epsilon_+ + \mathsf{4} \mu_-^2 + \mathsf{4} \epsilon_-^2 \\ &+ 4 \left[\mathsf{X}^2 + \mu_+ + \epsilon_+ \right] \left[\mathsf{s} \mathsf{X}_0 \sqrt{\epsilon_+ + 2 \mathsf{y} \mathsf{z} \epsilon_-} + \mathsf{y} \left(\mathsf{z} \epsilon_- + \mu_- \right) \right] \\ &+ 8 \left[\mathsf{s} \mathsf{y} \mathsf{X}_0 \sqrt{\epsilon_+ + 2 \mathsf{y} \mathsf{z} \epsilon_-} \left(\mathsf{z} \epsilon_- + \mu_- \right) + \mathsf{z} \epsilon_- \left(\mathsf{y} \mathsf{X}_0^2 + \mu_- \right) \right) \right]. \end{split}$$

where signs $\{s, y, z\}$ have been factored out from

$$\mu_{+} = m_{0}^{2} + (m_{3}M)^{2} \ge 0,$$
 $\mu_{-} = m_{0}m_{3}M,$ $\epsilon_{+} = \rho^{2}Y^{2} + r^{2}Z^{2} \ge 0,$ $\epsilon_{-} = \rho r Y Z$

• Any terms with signs $\{s, y, z\}$ attached contain **odd powers** of $\cos k_{\mu}$ or $\sin k_{\mu}$ for some direction \Rightarrow **symmetries restored upon integration**.

Symmetry breaking terms do not vanish by themselves, symmetry violations actually cancel between different quark modes.

Eigenvalue equations

• **Eigenvalue equations** of the MDF Dirac operator

$$\bar{\phi}_{\omega}^{\kappa_{s,x,y,z}} \widehat{D}_{\kappa_{s,x,y,z}} \phi_{\omega}^{\kappa_{s,x,y,z}} = \omega_{\kappa_{s,x,y,z}}$$

Eigenvectors $\phi_{\omega}^{\kappa_{s,x,y,z}}$ and eigenvalues $\omega_{\kappa_{s,x,y,z}}$ depend on all parameters

• Prototype: γ_5 hermiticity \Rightarrow reality & positivity of determinant

$$\omega_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \underbrace{\bar{\phi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \gamma_{\mathsf{5}}}_{=-(\psi_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}})^{\dagger}} \underbrace{\gamma_{\mathsf{5}} \hat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \gamma_{\mathsf{5}}}_{\hat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}^{\dagger}} \underbrace{\gamma_{\mathsf{5}} \phi_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}}_{=(\bar{\psi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}})^{\dagger}} = \left[\bar{\psi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \hat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \psi_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \right]^{\dagger}$$

 \Rightarrow Eigenvalues only in complex conjugate pairs: $\omega_{\kappa_{s,x,y,z}} \Leftrightarrow \omega_{\kappa_{s,x,y,z}}^*$

$$\det \widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \prod_{\omega} \omega_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \prod_{0 \leq \arg(\omega_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}|^2 \geq 0$$

using that MDF have imaginary eigenvalues $\omega_{\kappa_s,x,y,z}$ in chiral limit and demanding that quark masses are positive $(m_0^{\rm ren} \ge |m_3^{\rm ren}| \ge 0)$

Quark mass dependence

• Use positivity, expand determinant as square root

$$\det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} = \sqrt{\det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} \det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}} = \sqrt{\det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} \det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}}^{\dagger}}$$

• Sort in x, i.e. sort even and odd terms under action of $\widehat{\chi}$

$$\widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} = \mathbf{x}\widehat{E} + \widehat{O}, \qquad \widehat{E} = m_0 + \mathbf{y} m_3 \widehat{M}, \qquad \widehat{O} = \widehat{X} + \mathbf{s} \mathbf{y} \rho \widehat{Y} + \mathbf{s} \mathbf{z} r \widehat{Z}$$

 \bullet Expand determinant in \widehat{E} and \widehat{O}

$$\det \widehat{D}_{\mathsf{ksxyz}} = \sqrt{\det(\times \widehat{E} + \widehat{O}) \det(\times \widehat{E} - \widehat{O})} \quad = \sqrt{\det \widehat{E}^2 \det(1 - [\widehat{E}^{-1}\widehat{O}]^2)}$$

assuming that \widehat{E}^{-1} exists (both quarks are massive) $\Rightarrow \times$ cancels

$$\Rightarrow$$
 det $\widehat{D}_{\kappa_{s,x,y,z}} = d(m_0^2, m_3^2, y m_3 m_0; sy \rho, sz r, \xi; \beta, \xi_{\beta})$

su(2) transforms

• Transform with $\hat{\lambda}$: cancel sign y (\Rightarrow average combinations of m_3 and s)

$$\omega_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} = \underbrace{\overline{\phi}_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}} \widehat{\lambda}}_{=\widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},-\mathsf{y},\mathsf{z}}}} \underbrace{\widehat{\lambda} \widehat{D}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}}_{\widehat{\lambda} \widehat{\lambda}} \underbrace{\widehat{\lambda} \phi_{\omega}^{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}}_{=\omega_{\kappa_{\mathsf{s},\mathsf{x},-\mathsf{y},\mathsf{z}}}} = \omega_{\kappa_{\mathsf{s},\mathsf{x},-\mathsf{y},\mathsf{z}}}$$

- $\Rightarrow \omega_{\kappa_{s,x,+y,z}} = \omega_{\kappa_{s,x,-y,z}}$ (though different eigenvectors)
- Transform with $\widehat{\vartheta}$: cancel sign z (\Rightarrow averaging with the $k_{\sigma} = \frac{\pi}{a}$ modes)

$$\omega_{\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},\mathsf{Z}}} = \underbrace{\overline{\phi}_{\omega}^{\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},\mathsf{Z}}} \widehat{\mathcal{Y}}}_{=\widehat{D}\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},-\mathsf{Z}}} \underbrace{\widehat{\mathcal{Y}} \widehat{\phi}_{\omega}^{\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},\mathsf{Z}}}}_{\emptyset} \underbrace{\phi_{\omega}^{\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},\mathsf{Z}}}}_{\omega} = \omega_{\kappa_{\mathsf{S},\mathsf{X},\mathsf{Y},-\mathsf{Z}}}$$

 $\Rightarrow \omega_{\kappa_{s,x,y,+z}} = \omega_{\kappa_{s,x,y,-z}}$ (though different eigenvectors)

$$\Rightarrow \det \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} = d(m_0^2, m_3^2, r^2, \rho^2, \mathbf{s}\rho m_3 m_0; \xi; \beta, \xi_{\beta})$$

Invariance of the vacuum under all discrete symmetries is demonstrated for $m_3 = 0$ or $m_0 = 0$. Arbitrary quark masses require one further step...

Backup slides

Chiral even-odd structure of quark propagators

- Introduce chiral projectors $\widehat{P}_{\chi}^{\pm}=\frac{1}{2}\left(\mathbf{1}\pm\gamma_{5}\right)$
- ightarrow Sort quark matrix and propagator by \widehat{P}_{χ}^{\pm} even-odd structures

$$\begin{split} \widehat{D}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \mathbf{x} \widehat{E} + \widehat{\mathbf{O}}, \qquad \widehat{E} = m_0 + \mathbf{y} m_3 \widehat{M}, \qquad \qquad \widehat{\mathbf{O}} = \widehat{X} + \mathbf{s} \mathbf{y} \rho \widehat{Y} + \mathbf{s} \mathbf{z} r \widehat{Z} \\ \widehat{S}_{\kappa_{\mathbf{s},\mathbf{x},\mathbf{y},\mathbf{z}}} &= \mathbf{x} \widehat{S}^E + \widehat{S}^O, \qquad \widehat{S}^E = \left(\widehat{E} - \widehat{\mathbf{O}} \widehat{E}^{-1} \widehat{\mathbf{O}}\right)^{-1}, \qquad \widehat{S}^O = -\widehat{S}^E \widehat{\mathbf{O}} \widehat{E}^{-1} \end{split}$$

• Proof is straightforward

$$\widehat{S}\widehat{D} = \left(x\widehat{S}^E + \widehat{S}^O\right)\left(x\widehat{E} + \widehat{O}\right) = \frac{\left(x - \widehat{O}\widehat{E}^{-1}\right)\left(x\widehat{E} + \widehat{O}\right)}{\widehat{E} - \widehat{O}\widehat{E}^{-1}\widehat{O}} = \frac{\widehat{E} - \widehat{O}\widehat{E}^{-1}\widehat{O}}{\widehat{E} - \widehat{O}\widehat{E}^{-1}\widehat{O}} = \delta$$

• \hat{S}^E and \hat{S}^O connect different sets of chiral projectors $\hat{P}_{\chi}^{\pm} = \frac{1}{2} (1 \pm \gamma_5)$

$$\widehat{P}_{\chi}^{\pm}\widehat{S}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}\widehat{P}_{\chi}^{\pm}=\widehat{P}_{\chi}^{\pm}\widehat{S}^{E}\widehat{P}_{\chi}^{\pm},\quad \widehat{P}_{\chi}^{\pm}\widehat{S}_{\kappa_{\mathsf{s},\mathsf{x},\mathsf{y},\mathsf{z}}}\widehat{P}_{\chi}^{\mp}=\widehat{P}_{\chi}^{\pm}\widehat{S}^{o}\widehat{P}_{\chi}^{\mp}$$

Projection operator formalism

Meson two-point function has quark-disconnected & -connected parts

$$C_{\widehat{\Gamma}_{a},\widehat{\Gamma}_{b}}(n_{0}) = \sum_{n} \left[\left\langle \left(\bar{\psi}_{0} \widehat{\Gamma}_{a} \psi_{0} \right) \left(\bar{\psi}_{n} \widehat{\Gamma}_{b} \psi_{n} \right) \right\rangle \right]_{U}$$

$$= \sum_{n} \left[\left\langle \widehat{S}_{0,0} \widehat{\Gamma}_{a} \right\rangle \left\langle \widehat{S}_{n,n} \widehat{\Gamma}_{b} \right\rangle \right]_{U} - \left[\left\langle \widehat{S}_{n,0} \widehat{\Gamma}_{a} \widehat{S}_{0,n} \widehat{\Gamma}_{b} \right\rangle \right]_{U}$$

• Insert $\mathbf{1} = \widehat{P}_{\mathcal{C}}^{+} + \widehat{P}_{\mathcal{C}}^{-}$ into the traces, use cyclic property, e.g. $\left\langle \widehat{S} \widehat{\Gamma}_{a} \right\rangle = \sum_{\sigma=\pm 1} \left\langle \widehat{P}_{\mathcal{C}}^{\sigma} \widehat{S}^{\eta} \widehat{P}_{\mathcal{C}}^{\sigma} \widehat{\Gamma}_{a} + s \widehat{P}_{\mathcal{C}}^{\sigma} \widehat{S}^{\omega} \widehat{P}_{\mathcal{C}}^{-\sigma} \widehat{\Gamma}_{a} \right\rangle$

$$= \sum_{\sigma=\pm 1} \left\langle \widehat{S}^{\eta} \, \underline{\widehat{P}_{\mathcal{C}}^{\sigma} \, \widehat{\varGamma}_{a} \widehat{P}_{\mathcal{C}}^{\sigma}} + \mathbf{s} \widehat{S}^{\omega} \, \underline{\widehat{P}_{\mathcal{C}}^{-\sigma} \, \widehat{\varGamma}_{a} \widehat{P}_{\mathcal{C}}^{\sigma}} \right\rangle$$

• Sort kernels $\widehat{\Gamma}_{a,b}$ of interpolating operators by symmetries, e.g.

$$\{\widehat{\Gamma}^{\eta}\} = \{\mathbf{1}, \gamma_5, i\gamma_{\mu}\gamma_5\}, \qquad \{\widehat{\Gamma}^{\omega}\} = \{\gamma_{\mu}, i\gamma_{\mu}\gamma_{\nu}\}$$

Quark propagators linked to interpolators through even-odd structure

$$\left\langle \widehat{S} \widehat{\varGamma}_{a} \right\rangle = \sum_{\sigma=\pm 1} \left\langle \widehat{S}^{\eta} \widehat{\varGamma}_{a}^{\eta} \widehat{P}_{\mathcal{C}}^{\sigma} + \mathbf{s} \widehat{S}^{\omega} \widehat{\varGamma}_{a}^{\omega} \widehat{P}_{\mathcal{C}}^{\sigma} \right\rangle = \left\langle \widehat{S}^{\eta} \widehat{\varGamma}_{a}^{\eta} \right\rangle + \mathbf{s} \left\langle \widehat{S}^{\omega} \widehat{\varGamma}_{a}^{\omega} \right\rangle$$

Backup slides

• Quark-disconnected contribution:

$$\begin{split} C_{\widehat{\varGamma}_{a},\widehat{\varGamma}_{b}}^{\mathrm{disc}}(\textit{n}_{0}) &= \sum_{\textit{n}} \left[\left\langle \widehat{S}_{0,0}^{\eta} \widehat{\varGamma}_{a}^{\eta} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta} \widehat{\varGamma}_{b}^{\eta} \right\rangle + \left\langle \widehat{S}_{0,0}^{\omega} \widehat{\varGamma}_{a}^{\omega} \right\rangle \left\langle \widehat{S}_{n,n}^{\omega} \widehat{\varGamma}_{b}^{\omega} \right\rangle \right]_{\textit{U}} \\ &+ s \left[\left\langle \widehat{S}_{0,0}^{\eta} \widehat{\varGamma}_{a}^{\eta} \right\rangle \left\langle \widehat{S}_{n,n}^{\omega} \widehat{\varGamma}_{b}^{\omega} \right\rangle + \left\langle \widehat{S}_{0,0}^{\omega} \widehat{\varGamma}_{a}^{\omega} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta} \widehat{\varGamma}_{b}^{\eta} \right\rangle \right]_{\textit{U}} \end{split}$$

• Quark-connected contribution:

$$\begin{split} C_{\widehat{\Gamma}_{a},\widehat{\Gamma}_{b}}^{\text{con}}(n_{0}) &= \sum_{n} - \left[\left\langle \widehat{S}_{n,0}^{\eta} \widehat{\Gamma}_{a}^{\eta} \widehat{S}_{0,n}^{\eta} \widehat{\Gamma}_{b}^{\eta} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega} \widehat{\Gamma}_{a}^{\eta} \widehat{S}_{0,n}^{\omega} \widehat{\Gamma}_{b}^{\eta} \right\rangle \right]_{U} \\ &- \left[\left\langle \widehat{S}_{n,0}^{\eta} \widehat{\Gamma}_{a}^{\omega} \widehat{S}_{0,n}^{\eta} \widehat{\Gamma}_{b}^{\omega} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega} \widehat{\Gamma}_{a}^{\omega} \widehat{S}_{0,n}^{\omega} \widehat{\Gamma}_{b}^{\omega} \right\rangle \right]_{U} \\ &- \mathbf{s} \left[\left\langle \widehat{S}_{n,0}^{\eta} \widehat{\Gamma}_{a}^{\eta} \widehat{S}_{0,n}^{\omega} \widehat{\Gamma}_{b}^{\omega} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega} \widehat{\Gamma}_{a}^{\eta} \widehat{S}_{0,n}^{\eta} \widehat{\Gamma}_{b}^{\omega} \right\rangle \right]_{U} \\ &- \mathbf{s} \left[\left\langle \widehat{S}_{n,0}^{\omega} \widehat{\Gamma}_{a}^{\omega} \widehat{S}_{0,n}^{\eta} \widehat{\Gamma}_{b}^{\eta} \right\rangle + \left\langle \widehat{S}_{n,0}^{\eta} \widehat{\Gamma}_{a}^{\omega} \widehat{S}_{0,n}^{\omega} \widehat{\Gamma}_{b}^{\eta} \right\rangle \right]_{U} \end{split}$$

- Terms \propto s are $\sim \mathcal{O}(a)$, vanish for symmetric $\widehat{\Gamma}_{a,b} \Rightarrow \mathsf{no} \ \widehat{\mathcal{C}} \ \mathsf{or} \ \widehat{\mathcal{T}} \ \mathsf{violation}$
- Vacuum is ignorant of $s = \pm 1 \Rightarrow$ averaging correlators for s = +1 and s = -1 on same configurations legitimate, no change of continuum limit

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma_5}, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\Gamma^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\Gamma^{\eta O}\}, \quad \gamma_0 \in \{\Gamma^{\omega O}\}$$

 $\widehat{\gamma}_5$ -channel:

$$\begin{split} C_{\widehat{\gamma_5},\widehat{\gamma_5}}(n_0) &= C_{\widehat{\gamma_5},\widehat{\gamma_5}}^{\mathrm{con}}(n_0) + C_{\widehat{\gamma_5},\widehat{\gamma_5}}^{\mathrm{disc}}(n_0) \\ &= -\frac{1}{2} \sum_{\boldsymbol{n}} \left[\left\langle \widehat{S}_{n,0}^{\eta E} \widehat{\gamma_5} \widehat{S}_{0,n}^{\eta E} \widehat{\gamma_5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega O} \widehat{\gamma_5} \widehat{S}_{0,n}^{\omega O} \widehat{\gamma_5} \right\rangle \right]_{U} \\ &+ m_3^2 \left[\left\langle \widehat{S}_{n,0}^{\eta O} \widehat{\gamma_5} \widehat{S}_{0,n}^{\eta O} \widehat{\gamma_5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega E} \widehat{\gamma_5} \widehat{S}_{0,n}^{\omega E} \widehat{\gamma_5} \right\rangle \right]_{U} \\ &+ \sum_{\boldsymbol{n}} m_3^2 \left[\left\langle \widehat{S}_{0,0}^{\eta O} \widehat{\gamma_5} \right\rangle \left\langle \widehat{S}_{n,n}^{\eta O} \widehat{\gamma_5} \right\rangle \right]_{U} \end{split}$$

- Quark-disconnected part at leading order $\mathcal{O}(m_3^2)$, zero in isospin limit
- Compare with e.g. SU(2) ChPT @ NLO [J. Gasser, H. Leutwyler, 1984]

$$I_7 \langle \chi_- \rangle^2 = I_7 \left[2B_0 (m_d - m_u) \right]^2 \langle \tau^3 \text{Im } U \rangle^2$$

ullet Characteristic quark-disconnected term $\Rightarrow \operatorname{ground\ state\ is\ neutral\ pion}$

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma_5}, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\Gamma^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\Gamma^{\eta O}\}, \quad \gamma_0 \in \{\Gamma^{\omega O}\}$$

 γ_0 -channel:

$$\begin{split} C_{\gamma_{0},\gamma_{0}}(n_{0}) &= C_{\gamma_{0},\gamma_{0}}^{\text{con}}(n_{0}) \\ &= -\frac{1}{2} \sum_{\boldsymbol{n}} \left\{ \left[\left\langle \widehat{S}_{n,0}^{\eta E} \gamma_{5} \widehat{S}_{0,n}^{\eta E} \gamma_{5} \right\rangle - \left\langle \widehat{S}_{n,0}^{\omega,\mathcal{O}} \gamma_{5} \widehat{S}_{0,n}^{\omega,\mathcal{O}} \gamma_{5} \right\rangle \right]_{\boldsymbol{U}} \\ &- m_{3}^{2} \left[\left\langle \widehat{S}_{n,0}^{\eta,\mathcal{O}} \gamma_{5} \widehat{S}_{0,n}^{\eta,\mathcal{O}} \gamma_{5} \right\rangle - \left\langle \widehat{S}_{n,0}^{\omega,\mathcal{E}} \gamma_{5} \widehat{S}_{0,n}^{\omega,\mathcal{E}} \gamma_{5} \right\rangle \right]_{\boldsymbol{U}} \right\} \times (-1)^{n_{0}} \end{split}$$

- No quark-disconnected term at all (charged pion)
- Leading power m_3^2 in numerator has opposite sign (different flavors)

$$\langle \chi_- \chi_- \rangle = [2B_0(m_d - m_u)]^2 \langle \tau^3 \text{Im } U \tau^3 \text{Im } U \rangle^2$$

 \rightarrow L_8 and H_2 terms of SU(3) ChPT @ NLO [J. Gasser, H. Leutwyler, 1985]

• Opposite sign of $\mathcal{O}(\widehat{\omega}^2)$ terms of numerator (different tastes)

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma_5}, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\Gamma^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\Gamma^{\eta O}\}, \quad \gamma_0 \in \{\Gamma^{\omega O}\}$$

 γ_0 -channel: flip s \rightarrow -s for only one propagator

$$\begin{split} C_{\gamma_{0},\gamma_{0}}(n_{0}) &= C_{\gamma_{0},\gamma_{0}}^{\mathrm{con}}(n_{0}) \\ &= -\frac{1}{2} \sum_{n} \left\{ \left[\left\langle \widehat{S}_{n,0}^{\eta E} \gamma_{5} \widehat{S}_{0,n}^{\eta E} \gamma_{5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega O} \gamma_{5} \widehat{S}_{0,n}^{\omega O} \gamma_{5} \right\rangle \right]_{U} \\ &- m_{3}^{2} \left[\left\langle \widehat{S}_{n,0}^{\eta O} \gamma_{5} \widehat{S}_{0,n}^{\eta O} \gamma_{5} \right\rangle + \left\langle \widehat{S}_{n,0}^{\omega E} \gamma_{5} \widehat{S}_{0,n}^{\omega E} \gamma_{5} \right\rangle \right]_{U} \right\} \times (-1)^{n_{0}} \end{split}$$

- No quark-disconnected term at all (charged pion)
- Leading power m_3^2 in numerator has opposite sign (different flavors)

$$\langle \chi_- \chi_- \rangle = [2B_0(m_d - m_u)]^2 \langle \tau^3 \text{Im } U \tau^3 \text{Im } U \rangle^2$$

- \rightarrow L8 and H2 terms of SU(3) ChPT @ NLO [J. Gasser, H. Leutwyler, 1985]
- Same sign of $\mathcal{O}(\widehat{\omega}^2)$ terms of numerator (same tastes)

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma_5}, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners)

$$\mathbf{1}, i\gamma_0\gamma_5 \in \{\Gamma^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\Gamma^{\eta O}\}, \quad \gamma_0 \in \{\Gamma^{\omega O}\}$$

1-channel $(i\gamma_0\gamma_5=\tau_0)$:

$$\begin{aligned} C_{1,1}(n_0) &= C_{1,1}^{\text{con}}(n_0) \\ &= -\frac{1}{2} \sum_{\boldsymbol{n}} \left\{ \left[\left\langle \widehat{S}_{n,0}^{\eta E} \tau_0 \widehat{S}_{0,n}^{\eta E} \tau_0 \right\rangle - \left\langle \widehat{S}_{n,0}^{\omega,\mathcal{O}} \tau_0 \widehat{S}_{0,n}^{\omega,\mathcal{O}} \tau_0 \right\rangle \right]_{\boldsymbol{U}} \right. \\ &\left. - m_3^2 \left[\left\langle \widehat{S}_{n,0}^{\eta,\mathcal{O}} \tau_0 \widehat{S}_{0,n}^{\eta,\mathcal{O}} \tau_0 \right\rangle - \left\langle \widehat{S}_{n,0}^{\omega,E} \tau_0 \widehat{S}_{0,n}^{\omega,E} \tau_0 \right\rangle \right]_{\boldsymbol{U}} \right\} \times (-1)^{n_0} + \dots \end{aligned}$$

- No quark-disconnected contribution for pseudoscalar (charged pion)
- Same pattern of $\mathcal{O}(m_3^2)$ and $\mathcal{O}(\widehat{\omega}^2)$ terms as γ_0 -channel
- NB: The different interpolating operators (i.e. $\gamma_0, 1$) for charged pions are needed for decays with three-point functions (e.g. $\rho_0 \to \pi^+\pi^-, \ldots$)
- NB: Scalar states in 1-channel receive quark-disconnected contribution

Pseudoscalars with $\widehat{\Gamma}_{a,b} = \{\widehat{\gamma_5}, \gamma_0, \mathbf{1}, i\gamma_0\gamma_5\}$ (for $\gamma_0, \mathbf{1}$ as parity partners) $\mathbf{1}, i\gamma_0\gamma_5 \in \{\Gamma^{\eta E}\}, \quad \widehat{\gamma_5} \in \{\Gamma^{\eta O}\}, \quad \gamma_0 \in \{\Gamma^{\omega O}\}$

$$i\gamma_0\gamma_5$$
-channel $(i\gamma_0\gamma_5=\tau_0)$:

$$\begin{split} C_{\tau_0,\tau_0}(n_0) &= C_{\tau_0,\tau_0}^{\mathrm{con}}(n_0) + C_{\tau_0,\tau_0}^{\mathrm{disc}}(n_0) \\ &= -\frac{1}{2} \sum_{\boldsymbol{n}} \left[\left\langle \widehat{S}_{n,0}^{\eta E} \tau_0 \widehat{S}_{0,n}^{\eta E} \tau_0 \right\rangle + \left\langle \widehat{S}_{n,0}^{\boldsymbol{\omega},\mathcal{O}} \tau_0 \widehat{S}_{0,n}^{\boldsymbol{\omega},\mathcal{O}} \tau_0 \right\rangle \right]_{\mathcal{U}} \\ &+ m_3^2 \left[\left\langle \widehat{S}_{n,0}^{\eta,\mathcal{O}} \tau_0 \widehat{S}_{0,n}^{\eta,\mathcal{O}} \tau_0 \right\rangle + \left\langle \widehat{S}_{n,0}^{\boldsymbol{\omega},\mathcal{E}} \tau_0 \widehat{S}_{0,n}^{\boldsymbol{\omega},\mathcal{E}} \tau_0 \right\rangle \right]_{\mathcal{U}} + \dots \\ &+ \sum_{\boldsymbol{n}} \left[\left\langle \widehat{S}_{0,0}^{\eta E} \tau_0 \right\rangle \left\langle \widehat{S}_{n,n}^{\eta E} \tau_0 \right\rangle \right]_{\mathcal{U}} \end{split}$$

- Quark-disconnected part is $\mathcal{O}(1)$, nonzero in chiral & continuum limit
- ⇒ peudoscalar flavor singlet, i.e. ground state is the eta meson
 - NB: Quark-connected part is indistinguishable from a neutral pion.
 - NB: Scalar states exist in quark-connected part of the $i\gamma_0\gamma_5$ channel