B_c decays from highly improved staggered quarks and NRQCD

Andrew Lytle (HPQCD Collaboration) University of Glasgow

> Lattice 2016 Southampton, UK 27.07.16

Intro & Motivation

- Obtain $|V_{cb}|$ from $b \to c$ transitions in semileptonic decays.
- Treatment of c and especially b quarks challenging in lattice simulations due to lattice artifacts which grow as $(am_a)^n$.
- We use two complementary approaches:
 - ▶ Highly improved relativistic action at small a, extrapolate $m_h \to m_b$.
 - ▶ Improved non-relativistic formalism (NRQCD) at m_b .
- First study:
 - $ightharpoonup B_c o \eta_c$
 - ▶ $B_c \to J/\psi$ [accessible at LHCb]
- More precise $b \to c$ currents used in $B \to D$, $B \to D^*$.

Outline

- 1. Intro & Motivation.
- 2. Calculation Framework.
 - ► HISQ action.
 - ► Improved NRQCD.
- 3. Semileptonic Decays.
 - ► Correlation functions.
 - ▶ $B_c \to \eta_c$ and results.
 - ▶ $B_c \to J/\psi$ and results.
- 4. Discussion & Future Work.

DiRAC II computing

Computations carried out on the Darwin cluster at Cambridge.

Includes:

- 9600 Intel Sandy Bridge cores
- 2.6 GHz, 4 GB RAM/core
- 2 PB storage

Part of STFC's HPC facility for theoretical particle physics and astronomy.

- HISQ fermion action.
- Symanzik-improved gauge action, takes into account $\mathcal{O}(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to ~ 0.045 fm.
- Effects of u/d, s, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
 - ► Chiral fits.
 - ▶ Reduce statistical errors.

MILC ensemble parameters

NRQCD

Heavy quark propagators are calculated using a non-relativistic formalism.

Improved Non-relativistic QCD action

- Accurate through $\mathcal{O}(\alpha_s v^4)$.
- Discretisation corrections through $\mathcal{O}(\alpha_s v^2 a^2 p^2)$.
- $v^2 \sim 0.1$ bottomonium, ~ 0.3 charmonium.
- $am > 1 \rightarrow b$ quarks on a = 0.15 0.06 fm (down to $m_b/2$ on a = 0.15 fm).

Propagators constructed via an evolution equation, $G(\mathbf{x},t+a)=e^{-aH_{\mathrm{eff}}}G(\mathbf{x},t)$.

$$aH_{\text{NRQCD}} = aH_0 + a\delta H$$

$$aH_0 = -\frac{\Delta^{(2)}}{2am_b}$$

$$a\delta H = -c_1 \frac{(\Delta^{(2)})^2}{8(am_b)^3} + c_2 \frac{i}{8(am_b)^2} \left(\nabla \cdot \mathbf{E} - \mathbf{E} \cdot \nabla\right)$$

$$-c_3 \frac{1}{8(am_b)^2} \sigma \cdot \left(\nabla \times \mathbf{E} - \mathbf{E} \times \nabla\right)$$

$$-c_4 \frac{1}{2am_b} \sigma \cdot \mathbf{B} + c_5 \frac{\Delta^{(4)}}{24am_b}$$

$$-c_6 \frac{(\Delta^{(2)})^2}{16n(am_b)^2}$$

General strategy

Strategy pursued by HPQCD collaboration:

- Staggered quarks \rightarrow small a, physical pions, multiple lattice spacings..
- Highly improved action
 - \rightarrow discretisation effects under control at m_c
 - \rightarrow reduced taste-splittings
 - \rightarrow physical point ensembles with dynamical u/d, s, and c quarks.
- Compute heavy quarks using (improved) NRQCD.

These two approaches are complementary. Ideally there is a range of overlap in applicability to check the approaches are mutually consistent.

f_{H_c} from HISQ.

Decay constants – summary plot.

 B_c semileptonic decays

Semileptonic decays

- Study of $B_c \to \eta_c$, $B_c \to J/\psi$ decay matrix elements.
- We work in the frame where the B_c is at rest.
- The form factors which parametrise the matrix elements are functions of q^2 , where q is the four-momentum transferred to the leptons.
 - $q_{\text{max}}^2 = (M m)^2$, zero recoil of decay hadron.
 - $q^2 = 0$, maximum recoil of decay hadron.
- Matrix elements are determined by simultaneous fitting of three-point and two-point functions.

Semileptonic decays – meson correlators

Two-point functions:

Three-point functions:

Semileptonic decays

$$Z\langle \eta_c(p)|V^{\mu}|B_c(P)\rangle = f_+(q^2) \left[P^{\mu} + p^{\mu} - \frac{M^2 - m^2}{q^2} q^{\mu} \right] + f_0(q^2) \frac{M^2 - m^2}{q^2} q^{\mu},$$

From PCVC,

$$\langle \eta_c(p)|S|B_c(P)\rangle = \frac{M^2 - m^2}{m_{bo} - m_{co}} f_0(q^2)$$

Find Z by calculating both matrix elements at q_{max}^2 .

 f_0 and f_+ are determined in the NRQCD formalism from matrix elements of the vector current $\langle V_{\mu}^{\text{nrqcd}} \rangle$, where

$$V_0^{\text{nrqcd}} = (1 + \alpha_s z_0^{(0)}) \left[V_0^{(0)} + (1 + \alpha_s z_0^{(1)}) V_0^{(1)} + \alpha_s z_0^{(2)} V_0^{(2)} \right]$$

$$V_k^{\text{nrqcd}} = (1 + \alpha_s z_k^{(0)}) \left[V_k^{(0)} + (1 + \alpha_s z_k^{(1)}) V_k^{(1)} + \alpha_s z_k^{(2)} V_k^{(2)} + \alpha_s z_k^{(3)} V_k^{(3)} + \alpha_s z_k^{(4)} V_k^{(4)} \right].$$

One goal of the present work is to constrain the coefficients entering V_{μ}^{nrqcd} using fully relativistic HISQ data.

NRQCD form factors.

f_0 from HISQ.

$$\langle J/\psi(p,\varepsilon)|V^{\mu} - A^{\mu}|B_{c}(P)\rangle = \frac{2i\epsilon^{\mu\nu\rho\sigma}}{M+m}\varepsilon_{\nu}^{*}p_{\rho}P_{\sigma}V(q^{2}) - (M+m)\varepsilon^{*\mu}A_{1}(q^{2}) + \frac{\varepsilon^{*}\cdot q}{M+m}(p+P)^{\mu}A_{2}(q^{2}) + 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{0}(q^{2})$$

A_1 from HISQ.

Summary

- A promising approach to study of $b \to c$ transitions:
 - ► Lattice NRQCD with HISQ quarks, plus
 - ▶ Fully relativistic formulation, extrapolate m_h to m_b .
- Proof-of-principle demonstrated for f_0 .
 - ▶ Controlled calculation over full q^2 range.
 - ▶ Good agreement seen with NRQCD results.
- Outputs:
 - B_c to $J/\Psi \to \text{new possible determination of } |V_{cb}|$.
 - ▶ Improved understanding of NRQCD currents feeds into additional calculations (B to D, B to D^* , ...).

