B_{c} decays from highly improved staggered quarks and NRQCD

Andrew Lytle (HPQCD Collaboration)
University of Glasgow

Lattice 2016
Southampton, UK
27.07.16

Intro \& Motivation

- Obtain $\left|V_{c b}\right|$ from $b \rightarrow c$ transitions in semileptonic decays.
- Treatment of c and especially b quarks challenging in lattice simulations due to lattice artifacts which grow as $\left(a m_{q}\right)^{n}$.
- We use two complementary approaches:
- Highly improved relativistic action at small a, extrapolate $m_{h} \rightarrow m_{b}$.
- Improved non-relativistic formalism (NRQCD) at m_{b}.
- First study:
- $B_{c} \rightarrow \eta_{c}$
- $B_{c} \rightarrow J / \psi$ [accessible at LHCb]
- More precise $b \rightarrow c$ currents used in $B \rightarrow D, B \rightarrow D^{*}$.

Outline

1. Intro \& Motivation.
2. Calculation Framework.

- HISQ action.
- Improved NRQCD.

3. Semileptonic Decays.

- Correlation functions.
- $B_{c} \rightarrow \eta_{c}$ and results.
- $B_{c} \rightarrow J / \psi$ and results.

4. Discussion \& Future Work.

DiRAC II computing

Computations carried out on the Darwin cluster at Cambridge.

Includes:

- 9600 Intel Sandy Bridge cores
- 2.6 GHz, 4 GB RAM/core
- 2 PB storage

Part of STFC's HPC facility for theoretical particle physics and astronomy.

- HISQ fermion action.
- Symanzik-improved gauge action, takes into account $\mathcal{O}\left(N_{f} \alpha_{s} a^{2}\right)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to $\sim 0.045 \mathrm{fm}$.
- Effects of $u / d, s$, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
- Chiral fits.
- Reduce statistical errors.

MILC ensemble parameters

NRQCD

Heavy quark propagators are calculated using a non-relativistic formalism.

Improved Non-relativistic QCD action

- Accurate through $\mathcal{O}\left(\alpha_{s} v^{4}\right)$.
- Discretisation corrections through $\mathcal{O}\left(\alpha_{s} v^{2} a^{2} p^{2}\right)$.
- $v^{2} \sim 0.1$ bottomonium, ~ 0.3 charmonium.
- $a m>1 \rightarrow b$ quarks on $a=0.15-0.06 \mathrm{fm}$ (down to $m_{b} / 2$ on $a=0.15 \mathrm{fm})$.

Propagators constructed via an evolution equation, $G(\mathbf{x}, t+a)=e^{-a H_{\mathrm{eff}}} G(\mathbf{x}, t)$.

$$
\begin{aligned}
a H_{\mathrm{NRQCD}} & =a H_{0}+a \delta H \\
a H_{0} & =-\frac{\Delta^{(2)}}{2 a m_{b}} \\
a \delta H & =-c_{1} \frac{\left(\Delta^{(2)}\right)^{2}}{8\left(a m_{b}\right)^{3}}+c_{2} \frac{i}{8\left(a m_{b}\right)^{2}}(\nabla \cdot \mathbf{E}-\mathbf{E} \cdot \nabla) \\
& -c_{3} \frac{1}{8\left(a m_{b}\right)^{2}} \sigma \cdot(\nabla \times \mathbf{E}-\mathbf{E} \times \nabla) \\
& -c_{4} \frac{1}{2 a m_{b}} \sigma \cdot \mathbf{B}+c_{5} \frac{\Delta^{(4)}}{24 a m_{b}} \\
& -c_{6} \frac{\left(\Delta^{(2)}\right)^{2}}{16 n\left(a m_{b}\right)^{2}}
\end{aligned}
$$

General strategy

Strategy pursued by HPQCD collaboration:

- Staggered quarks \rightarrow small a, physical pions, multiple lattice spacings..
- Highly improved action
\rightarrow discretisation effects under control at m_{c}
\rightarrow reduced taste-splittings
\rightarrow physical point ensembles with dynamical $u / d, s$, and c quarks.
- Compute heavy quarks using (improved) NRQCD.

These two approaches are complementary. Ideally there is a range of overlap in applicability to check the approaches are mutually consistent.

$f_{H_{c}}$ from HISQ.

From b to c.

Decay constants - summary plot.

B_{c} semileptonic decays

Semileptonic decays

- Study of $B_{c} \rightarrow \eta_{c}, B_{c} \rightarrow J / \psi$ decay matrix elements.
- We work in the frame where the B_{c} is at rest.
- The form factors which parametrise the matrix elements are functions of q^{2}, where q is the four-momentum transferred to the leptons.
- $q_{\max }^{2}=(M-m)^{2}$, zero recoil of decay hadron.
- $q^{2}=0$, maximum recoil of decay hadron.
- Matrix elements are determined by simultaneous fitting of three-point and two-point functions.

Semileptonic decays - meson correlators

Two-point functions:

Three-point functions:

Semileptonic decays

$$
B_{c} \rightarrow \eta_{c}
$$

$$
\begin{aligned}
Z\left\langle\eta_{c}(p)\right| V^{\mu}\left|B_{c}(P)\right\rangle= & f_{+}\left(q^{2}\right)\left[P^{\mu}+p^{\mu}-\frac{M^{2}-m^{2}}{q^{2}} q^{\mu}\right]+ \\
& f_{0}\left(q^{2}\right) \frac{M^{2}-m^{2}}{q^{2}} q^{\mu},
\end{aligned}
$$

From PCVC,

$$
\left\langle\eta_{c}(p)\right| S\left|B_{c}(P)\right\rangle=\frac{M^{2}-m^{2}}{m_{b 0}-m_{c 0}} f_{0}\left(q^{2}\right)
$$

Find Z by calculating both matrix elements at $q_{\text {max }}^{2}$.
$B_{c} \rightarrow \eta_{c}$
f_{0} and f_{+}are determined in the NRQCD formalism from matrix elements of the vector current $\left\langle V_{\mu}^{\mathrm{nrqcd}}\right\rangle$, where

$$
\begin{gathered}
V_{0}^{\mathrm{nrqcd}}=\left(1+\alpha_{s} z_{0}^{(0)}\right)\left[V_{0}^{(0)}+\left(1+\alpha_{s} z_{0}^{(1)}\right) V_{0}^{(1)}+\alpha_{s} z_{0}^{(2)} V_{0}^{(2)}\right] \\
V_{k}^{\mathrm{nrqcd}}=\left(1+\alpha_{s} z_{k}^{(0)}\right)\left[V_{k}^{(0)}+\left(1+\alpha_{s} z_{k}^{(1)}\right) V_{k}^{(1)}+\alpha_{s} z_{k}^{(2)} V_{k}^{(2)}+\right. \\
\left.\alpha_{s} z_{k}^{(3)} V_{k}^{(3)}+\alpha_{s} z_{k}^{(4)} V_{k}^{(4)}\right] .
\end{gathered}
$$

One goal of the present work is to constrain the coefficients entering $V_{\mu}^{\text {nrqcd }}$ using fully relativistic HISQ data.

NRQCD form factors.

f_{0} from HISQ.

$$
B_{c} \rightarrow J / \psi
$$

$$
\begin{gathered}
\langle J / \psi(p, \varepsilon)| V^{\mu}-A^{\mu}\left|B_{c}(P)\right\rangle= \\
\frac{2 i \epsilon^{\mu \nu \rho \sigma}}{M+m} \varepsilon_{\nu}^{*} p_{\rho} P_{\sigma} V\left(q^{2}\right)-(M+m) \varepsilon^{* \mu} A_{1}\left(q^{2}\right)+ \\
\frac{\varepsilon^{*} \cdot q}{M+m}(p+P)^{\mu} A_{2}\left(q^{2}\right)+2 m \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{3}\left(q^{2}\right)-2 m \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{0}\left(q^{2}\right)
\end{gathered}
$$

$$
B_{c} \rightarrow J / \psi
$$

A_{1} from HISQ.

Summary

- A promising approach to study of $b \rightarrow c$ transitions:
- Lattice NRQCD with HISQ quarks, plus
- Fully relativistic formulation, extrapolate m_{h} to m_{b}.
- Proof-of-principle demonstrated for f_{0}.
- Controlled calculation over full q^{2} range.
- Good agreement seen with NRQCD results.
- Outputs:
- B_{c} to $J / \Psi \rightarrow$ new possible determination of $\left|V_{c b}\right|$.
- Improved understanding of NRQCD currents feeds into additional calculations (B to D, B to D^{*}, \ldots).

Thank you!

