Lattice operators for scattering of particles with spin

Sasa Prelovsek
University of Ljubljana \& Jozef Stefan Institute, Ljubljana, Slovenia part of this work done while at: Jefferson Lab, Virginia, USA

Lattice 2016

Southampton, GB, 25.7.-30.7.2016
in collaboration with
Ursa Skerbis (Ljubljana) \& Christian B. Lang (Graz)
based on S. Prelovsek, U. Skerbis, C.B. Lang: arXiv:1607:06738

Motivation

- Mainly PP scattering was simulated on lattice up to now \Rightarrow scattering phase shift extracted (P has no spin)
- $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$: where one or both H carry spin was explored mostly only for $\mathrm{L}=0$ many interesting channels still unexplored, particularly for $L>0$

I will consider construction of $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ interpolators where H is one of $\mathrm{P}, \mathrm{V}, \mathrm{N}$ hadrons, which is (almost) stable with respect to strong decay:
$\mathrm{P}=$ psuedoscalar $\left(\mathrm{J}^{\mathrm{P}}=0^{\wedge}-\right)=\pi, \mathrm{K}, \mathrm{D}, \mathrm{B}, \eta_{\mathrm{c}}, \ldots$
$V=$ vector $\quad\left(J^{\mathrm{P}}=1^{\wedge}-\right)=D^{*}, \mathrm{~B}^{*}, \mathrm{~J} / \Psi, \Upsilon_{b}, \mathrm{~B}_{\mathrm{c}}{ }^{*}, \ldots . \quad$ (but not directly applicable to ρ as is unstable...)
$N=$ nucleon $\quad\left(J^{\mathrm{P}}=1 / 2^{\wedge+}\right)=p, n, \wedge, \Lambda_{c}, \Sigma, \ldots \quad$ (but not directly applicable to $\mathrm{N}^{-}(1535)$ as is unstable...)

I will consider interpolators for channels :
PV: meson resonances and $\underline{Q Q}$-like exotics (e.g. $\left.\pi \mathrm{J} / \Psi, \mathrm{D} \underline{\mathrm{D}}^{*} ..\right)$
$\mathbf{P N}$: baryon resonances (e.g. $\pi \mathrm{N}, \mathrm{K} \mathrm{N} . .$.) and pentaquarks
NV: baryon resonances and pentaquarks
NN: nucleon-nucleon and deuterium, baryon-baryon

Motivation

- Mainly PP scattering was simulated on lattice up to now \Rightarrow scattering phase shift extracted (P has no spin)
- $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$: where one or both H carry spin was explored mostly only for $\mathrm{L}=0$ many interesting channels still unexplored, particularly for $L>0$

I will consider construction of $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ interpolators where H is one of $\mathrm{P}, \mathrm{V}, \mathrm{N}$ hadrons, which is (almost) stable with respect to strong decay:
$\mathrm{P}=$ psuedoscalar $\left.\left(\mathrm{J}^{\mathrm{P}}=0^{\wedge}\right)^{-}\right)=\pi, \mathrm{K}, \mathrm{D}, \mathrm{B}, \eta_{\mathrm{c}}, \ldots$
$V=$ vector $\quad\left(J^{\mathrm{P}}=1^{\wedge-}\right)=\mathrm{D}^{*}, \mathrm{~B}^{*}, \mathrm{~J} / \Psi, \Upsilon_{b}, \mathrm{~B}_{\mathrm{c}}{ }^{*}, \ldots \quad$ (but not directly applicable to ρ as is unstable...)
$\mathrm{N}=$ nucleon $\quad\left(J^{\mathrm{P}}=1 / 2^{\wedge+}\right)=\mathrm{p}, \mathrm{n}, \wedge, \wedge_{c^{\prime}}, \Sigma, \ldots \quad$ (but not directly applicable to $\mathrm{N}^{-}(1535)$ as is unstable...)

I will consider interpolators for channels :

$$
\left\langle O_{i}(t) \mid O_{j}^{\dagger}(0)\right\rangle \rightarrow E_{n} \rightarrow \delta(E)
$$

PV: meson resonances and QQ-like exotics (e.g. $\left.\pi J / \Psi, D \underline{D}^{*} ..\right)$
$\mathbf{P N}$: baryon resonances (e.g. $\pi \mathrm{N}, \mathrm{K} \mathrm{N} . .$.) and pentaquarks
NV: baryon resonances and pentaquarks
NN: nucleon-nucleon and deuterium, baryon-baryon

- $\mathrm{O}=\mathrm{HH}$ needed to create/annihilate HH system
- E_{n} related to phase shifts for HH scattering
- two spinless particles Luscher (1991):
- two particles with arbitrary spin Briceno, PRD89, 074507 (2014)
(other authors: some specific cases)

Some previous related work on lattice HH operators for hadrons with spin and $\mathrm{L} \neq 0$

Partial-wave method for HH :

Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, 1508.00886
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492]
Projection method for HH :
M. Göckeler et al., Phys.Rev. D86, 094513 (2012), [arXiv:1206.4141].

Helicity operators for single-H:
Thomas, Edwards and Dudek, Phys. Rev. D85, 014507 (2012), [arXiv:1107.1930]

Some aspects of helicity operators for HH :
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492].
Dudek, Edwards and Thomas, Phys. Rev. D86, 034031 (2012), [arXiv:1203.6041].
Which CG of H_{1} and H_{2} to $\mathrm{H}_{1} \mathrm{H}_{2}$ irreps are nonzero; values of CG not published:
Moore and Fleming, Phys. Rev. D 74, 054504 (2006), [arXiv:hep- lat/0607004].
etc ...

However: for a lattice practitioner who was interested in a certain channel, for example (PV scattering in L=2 or VN scattering with $\lambda_{V}=1$ and $\lambda_{N}=1 / 2$)
there were still lots of puzzles to beat before constructing a reliable interpolator ..

Outline

I will present

- three different methods to construct operators
- illuminate the proofs (given in the paper)
- verify they lead to consistent operators (that gives confidence in each one of them)
- they lead to complementary physics info
- present explicit ops for PV, PN, VN, NN for lowest two momentum shells.

We restrict to total momentum zero

$H^{(1)}(p) H^{(2)}(-p), P_{\text {tot }}=0$
Advantage of $\mathrm{P}_{\text {tot }}=0$:

- parity P is a good number
- channels with even and odd L do not mix in the same irrep not true for $\mathrm{P}_{\text {tot }} \neq 0$

Building blocks H : required transformation properties of H

to prove correct transformation properties of HH

$$
m_{s} \text { is not good quantum number in general for } p \neq 0 \text { : in this case it denotes } m_{s} \text { of corresponding } H_{m s}(p=0)
$$

$$
\begin{aligned}
& \text { rotations R Wigner D matrix inversion I } \quad\left|p, s, m_{s}\right\rangle \equiv H_{m_{s}}^{\dagger}(p)|0\rangle \\
& R\left|p, s, m_{s}\right\rangle=\sum_{m_{s}^{\prime}} \underset{D_{m_{s}^{\prime} m_{s}}^{s}(R)}{ }\left|R p, s, m_{s}^{\prime}\right\rangle, \quad I\left|p, s, m_{s}\right\rangle=(-1)^{P}\left|-p, s, m_{s}\right\rangle \quad \text { state } \\
& \text { note: } \begin{array}{c}
\mathrm{D} \rightarrow \mathrm{D}^{*}
\end{array}\left\{\begin{array}{l}
R H_{m_{s}}^{\dagger}(p) R^{-1}=\sum_{m_{s}^{\prime}} D_{m_{s}^{\prime} m_{s}}^{s}(R) H_{m_{s}^{\prime}}^{\dagger}(R p), \quad I H_{m_{s}}^{\dagger}(p) I=(-1)^{P} H_{m_{s}}^{\dagger}(-p) . \quad \text { creation field } \\
R H_{m_{s}}(p) R^{-1}=\sum_{m_{s}^{\prime}} D_{\substack{m_{s}^{\prime} m_{s} \\
D_{m_{m}, m_{s}\left(R^{-1}\right)}^{s}(R)^{*} H_{m_{s}^{\prime}}(R p),}} \quad I H_{m_{s}}(p) I=(-1)^{P} H_{m_{s}}(-p) \quad \text { annihilation field }
\end{array}\right. \\
& \mathrm{m}_{\mathrm{s}} \text { is a good quantum number at } \mathrm{p}=0: \quad S_{z} H_{m_{s}}(0) S_{z}^{-1}=m_{s} H_{m_{s}}(0)
\end{aligned}
$$

Non-practical choice of H : canonical fields $\mathrm{H}^{(c)}$

with correct transformation properties under R and I

$$
H_{m_{s}}^{(c)}(p) \equiv L(p) H_{m_{s}}(0) \quad \mathrm{L}(\mathrm{p}) \text { is boost from } 0 \text { to } \mathrm{p} ; \quad \text { drawback: } \mathrm{H}^{(c)}(\mathrm{p}) \text { depend on } \mathrm{m}, \mathrm{E}, . .
$$

$$
\begin{array}{ll}
V_{m_{s}=1}(0)=\frac{1}{\sqrt{2}}\left[-V_{x}(0)+i V_{y}(0)\right] \rightarrow V_{m_{s}=1}^{(c)}\left(p_{x}\right)=\frac{1}{\sqrt{2}}\left[-\gamma V_{x}\left(p_{x}\right)+i V_{y}\left(p_{x}\right)\right] & \left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right) \xrightarrow{\Lambda^{1}\left(p_{x}\right)}\left(\begin{array}{ll}
\gamma & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
1
\end{array}\right)\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right)=\left(\begin{array}{c}
-\gamma \\
i \\
0
\end{array}\right) \\
N_{m_{s}=1 / 2}(0)=\mathcal{N}_{1}(0) \rightarrow N_{m_{s}=1 / 2}^{(c)}\left(p_{x}\right) \propto \mathcal{N}_{1}\left(p_{x}\right)+\frac{p_{x}}{E+m} \mathcal{N}_{4}\left(p_{x}\right) \\
\mathcal{N}_{\mu=1, ., 4} \text { are Dirac components in Dirac basis } & \left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \xrightarrow{\Lambda^{1 / 2\left(p_{x}\right)}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p_{x}}{E+m}
\end{array}\right)
\end{array}
$$

Non-practical choice of H : canonical fields $\mathrm{H}^{(c)}$

with correct transformation properties under R and I

$$
H_{m_{s}}^{(c)}(p) \equiv L(p) H_{m_{s}}(0) \quad \mathrm{L}(\mathrm{p}) \text { is boost from } 0 \text { to } \mathrm{p} ; \quad \text { drawback: } \mathrm{H}^{(\mathrm{c})}(\mathrm{p}) \text { depend on } \mathrm{m}, \mathrm{E}, . .
$$

$$
\begin{array}{ll}
V_{m_{s}=1}(0)=\frac{1}{\sqrt{2}}\left[-V_{x}(0)+i V_{y}(0)\right] \rightarrow V_{m_{s}=1}^{(c)}\left(p_{x}\right)=\frac{1}{\sqrt{2}}\left[-\gamma V_{x}\left(p_{x}\right)+i V_{y}\left(p_{x}\right)\right] & \left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right) \xrightarrow{\Lambda^{1}\left(p_{x}\right)}\left(\begin{array}{ll}
\gamma & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
1
\end{array}\right)\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right)=\left(\begin{array}{c}
-\gamma \\
i \\
0
\end{array}\right) \\
N_{m_{s}=1 / 2}(0)=\mathcal{N}_{1}(0) \rightarrow N_{m_{s}=1 / 2}^{(c)}\left(p_{x}\right) \propto \mathcal{N}_{1}\left(p_{x}\right)+\frac{p_{x}}{E+m} \mathcal{N}_{4}\left(p_{x}\right) \\
\mathcal{N}_{\mu=1, ., 4} \text { are Dirac components in Dirac basis }
\end{array}
$$

Practical choice of H

with correct transformation properties under R and ।

$$
\begin{array}{ll}
\qquad P(p)=\sum_{x} \bar{q}(x) \gamma_{5} q(x) e^{i p x} \\
V_{m_{s}= \pm 1}(p)=\frac{1}{\sqrt{2}}\left[\mp V_{x}(p)+i V_{y}(p)\right], \quad V_{m_{s}=0}(p)=V_{z}(p) & V_{i}(p)=\sum_{x} \bar{q}(x) \gamma_{i} q(x) e^{i p x}, i=x, y, z \\
N_{m_{s}=1 / 2}(p)=\mathcal{N}_{\mu=1}(p), \quad N_{m_{s}=-1 / 2}(p)=\mathcal{N}_{\mu=2}(p) & \mathcal{N}_{\mu}(p)=\sum_{x} \epsilon_{a b c}\left[q^{a T}(x) C \gamma_{5} q^{b}(x)\right] q_{\mu}^{c}(x) e^{i p x}, \quad \mu=1, . ., 4 \\
\text { These H are employed as building block in our HH operators } & \text { simple examples }
\end{array}
$$

Required transformation properties of $\mathrm{O}=\mathrm{HH}$

$$
R O^{J, m_{J}}\left(P_{t o t}=0\right) R^{-1}=\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R^{-1}\right) O^{J, m_{J}^{\prime}}(0) \quad I O^{J, m_{J}}(0) I=(-1)^{P} O^{J, m_{J}}(0)
$$

relevant rotations: $\quad R \in O^{(2)}$ o with 24 el. for $\mathrm{J}=$ integer ; O^{2} with 48 elements for J=half-integer The group including inversion I: $\quad \mathrm{O}_{\mathrm{h}}$ with 48 el . for J=integer ; $\mathrm{O}_{\mathrm{h}}{ }_{\mathrm{h}}$ with 96 elements for J=half-integer

The representation O^{\prime} reducible under $O^{(2)}$. Irreducible representations (irreps) are denoted by Γ and rows r

$$
\begin{aligned}
& R|\Gamma, r\rangle=\sum_{r^{\prime}} T_{r^{\prime}, r}^{\Gamma}(R)\left|\Gamma, r^{\prime}\right\rangle \quad R \in O^{(2)}, \quad I|\Gamma, r\rangle=(-1)^{P}|\Gamma, r\rangle \\
& R O_{\Gamma, r} R^{-1}=\sum_{r^{\prime}} T_{r, r^{\prime}}^{\Gamma}\left(R^{-1}\right) O_{\Gamma, r^{\prime}} \quad R \in O^{(2)}, \quad I O_{\Gamma, r} I=(-1)^{P} O_{\Gamma, r}
\end{aligned}
$$

J	$\Gamma\left(\operatorname{dim}_{\Gamma}\right)$
0	$A_{1}(1)$
$\frac{1}{2}$	$G_{1}(2)$
1	$T_{1}(3)$
$\frac{3}{2}$	$H(4)$
2	$E(2) \oplus T_{2}(3)$
$\frac{5}{2}$	$H(4) \oplus G_{2}(2)$
3	$A_{2}(1) \oplus T_{1}(3) \oplus T_{2}(3)$

Method I: Projection operators

$$
O_{|p|, \Gamma, r, n}=\sum_{\tilde{R} \in O_{h}^{(2)}} T_{r, r}^{\Gamma}(\tilde{R}) \tilde{R} H^{(1), a}(p) H^{(2), a}(-p) \tilde{R}^{-1},
$$

$n=1, . ., n_{\max }$

Disadvantage:
not informative which continuum numbers (partial wave L or helicity) each O_{n} corresponds

This is remedied in next two method.s

VN in $\mathrm{H}^{-}, \mathrm{n}_{\max }=3:$

$O_{H-, r=1, n=1}=i N_{\frac{1}{2}}\left(e_{x}\right) V_{x}\left(-e_{x}\right)+i N_{\frac{1}{2}}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+N_{\frac{1}{2}}\left(e_{y}\right) V_{y}\left(-e_{y}\right)+N_{\frac{1}{2}}\left(-e_{y}\right) V_{y}\left(e_{y}\right)$
$O_{H^{-}, r=1, n=2}=\ldots$
$O_{H^{-}, r=1, n=3}=\ldots$
Sasa Prelovsek

Method II: Partial-wave operators

$\frac{\text { Starting annihilation operator }}{\text { (before sobduction to irreps) }} O^{|p|, J, m_{J}, S, L}=\sum_{m_{L}, m_{S}, m_{s 1}, m_{s 2}} C_{L m_{L}, S m_{S}}^{J m_{J}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{S m_{S}} \sum_{R \in O}^{\text {Clebsch-Gordans }} Y_{L m_{L}}^{*}(\widehat{R p}) H_{m_{s 1}}^{(1)}(R p) H_{m_{s 2}}^{(2)}(-R p)$

Proposed for NN in [Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, CALLAT, 1508.00886] There $Y_{I m}{ }^{*}$ appears where we have $Y_{I m}$

Proof (in our paper and backup slides): the correct transformation properties

$$
R_{a} O^{J, m_{J}, S, L} R_{a}^{-1}=\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R_{a}^{-1}\right) O^{J, m_{J}^{\prime}, S, L}
$$

follow from transformations of H (slide 4) and properties of $\mathrm{C}, \mathrm{Y}_{\mathrm{Im}}$ and D .

Example of PV operators

$$
\begin{aligned}
O^{|p|=1, J=1, m_{J}=0, L=0, S=1} & =\sum_{p= \pm e_{x}, \pm e_{y}, \pm e_{z}} \mathrm{P}(p) V_{z}(-p), \\
O^{|p|=1, J=1, m_{J}=0, L=2, S=1} & =\sum_{p= \pm e_{x}, \pm e_{y}} \mathrm{P}(p) V_{z}(-p)-2 \sum_{p= \pm e_{z}} \mathrm{P}(p) V_{z}(-p)
\end{aligned}
$$

Subduction to irreps discussed later on.

Method III: helicity operators

[HH in continuum: Jacob, Wick (1959)]
[for single H on lattice: HSC, Thomas et al. (2012)]
[not widely used for HH on lattice yet]

- building blocks in partial-wave operators are $H_{m s}(p)$ and m_{s} is not good for $p \neq 0$:
- Helicity $\boldsymbol{\lambda}$ is projection of S to p. It is good also for particles in flight

$$
h \equiv S \cdot p /|p|
$$

- Definition of single-hadron helicity operator
denoted by superscript h
- Helicity is not modified under R (p and s transform the same way)
- Two-hadron O:

$$
O^{|p|, J, m_{J}, \lambda_{1}, \lambda_{2}, \lambda}=\sum_{R \in O^{(2)}} D_{m_{J}, \lambda}^{J}(R) R H_{\lambda_{1}}^{(1), h}(p) H_{\lambda_{2}}^{(2), h}(-p) R^{-1}
$$

p is arbitrary momentum in given shell $|p| ; R$ does not modify $\lambda_{1,2}$, so $H_{1,2}$ have chosen $\lambda_{1,2}$ in all terms

- Proof: $\quad R_{a} O J, m_{3} \lambda_{1}, \lambda_{2} R_{a}^{-1}=\sum_{R \in \theta^{(2)}} D_{m_{3}, \lambda}^{J}(R) R_{a} R H_{\lambda_{1}^{h}}^{h_{1}}(p) H_{\alpha_{2}^{\prime}}^{h}(-p) R^{-1} R_{a}^{-1}$
$=\sum_{R \in Q^{(2)}} D_{m_{3}, \lambda}^{J}\left(R_{a}^{-1} R^{\prime}\right) R^{\prime} H_{\lambda_{1}^{h}}^{h_{2}^{\prime}(p) H_{\lambda_{2}}^{h}(-p) R^{\prime-1}}$
$=\sum_{R^{\prime} \in 0^{2}} \sum_{m_{j}^{\prime}} D_{m_{3}, m_{S}^{\prime}}^{J}\left(R_{a}^{-1}\right) D_{m_{j_{3}^{\prime}, \lambda}^{\prime}}^{J}\left(R^{\prime}\right) R^{\prime} H_{\lambda_{1}}^{h}(p) H_{\lambda_{2}}^{h}(-p) R^{\prime-1}$

$$
R H_{\lambda}^{h}(p) R^{-1}=e^{i \varphi(R)} H_{\lambda}^{h}(R p)
$$

$$
\begin{aligned}
& H_{\lambda}^{h}(p) \equiv R_{0}^{\downarrow^{\text {rotation from } \mathrm{p}_{2} \text { top }}} H_{m_{s}=\lambda}\left(p_{z}\right)\left(R_{0}^{p}\right)^{-1} \\
& \operatorname{god}_{s}
\end{aligned}
$$

Method III: helicity operators (continued)

Using definitions of $H_{\lambda}^{h}(p) \equiv R_{0}^{p} H_{m_{s}=\lambda}\left(p_{z}\right)\left(R_{0}^{p}\right)^{-1}$ and parity projection $\frac{1}{2}(\mathcal{O}+P I \mathcal{O} I)$

$$
\begin{array}{ll}
O^{|p|, J, m_{J}, P, \lambda_{1}, \lambda_{2}, \lambda}=\frac{1}{2} \sum_{R \in O^{(2)}} D_{m_{J}, \lambda}^{J}(R) & R R_{0}^{p}\left[H_{m_{s_{1}}=\lambda_{1}}^{(1)}\left(p_{z}\right) H_{m_{s_{2}}=-\lambda_{2}}^{(2)}\left(-p_{z}\right)\right. \\
& \left.+P I H_{m_{s_{1}}=\lambda_{1}}^{(1)}\left(p_{z}\right) H_{m_{s_{2}}=-\lambda_{2}}^{(2)}\left(-p_{z}\right) I\right]\left(R_{0}^{p}\right)^{-1} R^{-1}
\end{array}
$$

- H are building blocks from slide 6 below: actions of R and I on $H_{m s}(p)$ are given in slide 4
- There are several choices of $R_{0}{ }^{p}$ which rotate from p_{z} to p :
- these lead to different phases in definition of $H_{\lambda}{ }^{h}$: inconvenience
- but they lead to the same O above (modulo irrelevant overall factor): so no problem for such construction
- Simple choice for momentum shell $|p|=1: p=p_{z}$ and $R_{0}{ }^{p}=$ Identity
- paper provides details how to use functions from Mathematica for construction, also since Mathematica uses non-conventional defnition of D

$$
\begin{aligned}
& D_{m, m^{\prime}}^{j}\left[R_{\alpha \beta \gamma}^{\omega}\right]=F \cdot \text { WignerD }\left[\left\{j, m, m^{\prime}\right\},-\alpha,-\beta,-\gamma\right], \quad F=\{\begin{array}{l}
1: j=\text { integer } \\
\pm 1: j=\text { halfinteger, } \mathrm{F}(\omega+2 \pi)=-\mathrm{F}(\omega), \text { choice of sign in our paper } \\
\{\alpha, \beta, \gamma\}
\end{array}=\underbrace{\text { EulerAngles }[T]}_{\text {MATHEMATICA }} \quad T=\exp (-i \vec{n} \vec{J} \omega) \text { and }\left(J_{k}\right)_{i j}=-i \epsilon_{i j k}
\end{aligned}
$$

Subduction of O^{\prime} to irreducible representations

continum R			
Partial-wave operators $\mathrm{O}^{\mathrm{J}, \mathrm{mJ}, \mathrm{L}, \mathrm{s}}$			
Helicity operators	$\mathrm{O}^{\mathrm{J}, \mathrm{mJ}, \lambda 1, \lambda 2}$	\quad	$O_{\|p\|, \Gamma, r}^{[J, S, L]}=\sum_{m_{J}} \mathcal{S}_{\Gamma, r}^{J, m_{J}} O^{\|p\|, J, m_{J}, S, L}$
:---			
discrete R in discrete group $\mathrm{O}^{(2)}$			

The representation O^{J} is irreducible under continuum R .
But it is reducible under R in discrete group lattice $O^{(2)}$.
Operators that transform according to irrep 「 and row r obtained via subduction.

Subduction matrices S

[Dudek et al., PRD82, 034508 (2010)
Edwards et al, PRD84, 074508 (2011)]

Single-hadron operators H: experience by Hadron Spectrum collaboration Phys. Rev. D 82, 034508 (2010)

- subduced operators $\mathrm{O}^{[J]}$ carry memory of continuum spin and dominantly couple to states with this J

Expectation for partial-wave and helicity operators HH obtained by subduction :

- $O_{[p \mid, \Gamma, r}^{[J, S, L]} \quad$ would dominantly couple to eigen-states with continuum (J,L,S)
- $O_{|p|, \Gamma, r}^{\left[J, P, \lambda_{1}, \lambda_{2}, \lambda\right]}$ would dominantly couple to eigen-states with continuum $\left.(J, \lambda 1, \lambda 2)\right]$
valuable for simulations
give physics intuition on quant. num.

Explicit expressions all for $H^{(1)}(p) H^{(2)}(-p)$

PV, PN, VN, NN

in three methods
all irreps, $|p|=0,1$
given in
[S. Prelovsek, U. Skerbis, C.B. Lang, arXiv:1607. 1607:06738]

Example: P(p)V(-p) operators

J	$\Gamma\left(\operatorname{dim}_{\Gamma}\right)$
0	$A_{1}(1)$
$\frac{1}{2}$	$G_{1}(2)$
1	$T_{1}(3)$

$G_{1}(2)$
$T_{1}(3)$ H(4) $E(2) \oplus T_{2}(3)$
$H(4) \oplus G_{2}(2)$
$A_{2}(1) \oplus T_{1}(3) \oplus T_{2}(3)$
row=1 provided
Conventions for row
Bernard et al. , 0806.4495
rows of T1: (x, y, z)
rows of T2: $(y z, x z, x y)$

$$
\begin{aligned}
& |p|=1 \\
& A_{1}^{-} \text {: } \\
& O_{A_{1}^{-}, r=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)-\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+\mathrm{P}\left(e_{y}\right) V_{y}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{y}\left(e_{y}\right) \\
& +\mathrm{P}\left(e_{z}\right) V_{z}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{z}\left(e_{z}\right) \\
& O_{A_{1}^{-}, r=1}^{\left[J=0, m_{J}=0, P=-, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{A_{1}^{-}, r=1}^{\left[J=0, m_{J}=0, L=1, S=1\right]}=O_{A_{1}^{-}, r=1} \\
& T_{1}^{+} \text {: } \\
& O_{T_{1}^{+}, r=1, n=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)+\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right) \\
& O_{T_{1}^{+}, r=1, n=2}=\mathrm{P}\left(e_{y}\right) V_{x}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{x}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{x}\left(-e_{z}\right)+\mathrm{P}\left(-e_{z}\right) V_{x}\left(e_{z}\right) \\
& O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=2} \\
& O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=1} \\
& O_{T_{1}^{+}, r=1}^{[J=1, L=0, S=1]}=O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \\
& O_{T_{1}^{+}, r=1}^{[J=1, L=2, S=1]}=-2 O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \\
& T_{1}^{-}: \\
& { }_{O_{T_{1}^{-}, r=1}}=-\mathrm{P}\left(e_{y}\right) V_{z}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{z}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{y}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{y}\left(e_{z}\right) \\
& O_{T_{1}^{-}, r=1}^{\left[J=1, P=-, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{1}^{-}, r=1}^{[J=1, L=1, S=1]}=O_{T_{1}^{-}, r=1} \\
& \begin{array}{|l|}
T_{2}^{+}: \\
O_{T^{+}},
\end{array} \\
& O_{T_{2}^{+}, r=1}=\mathrm{P}\left(e_{y}\right) V_{x}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{x}\left(e_{y}\right)-\mathrm{P}\left(e_{z}\right) V_{x}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{x}\left(e_{z}\right) \\
& O_{T_{2}^{+}, r=1}^{\left[J=2, P=+, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{2}^{+}, r=1}^{[J=2, L=2, S=1]}=O_{T_{2}^{+}, r=1} \\
& T_{2}^{-}: \\
& O_{T_{2}^{-}, r=1}=\mathrm{P}\left(e_{y}\right) V_{z}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{z}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{y}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{y}\left(e_{z}\right) \\
& O_{T_{2}^{-}, r=1}^{\left[J=2, P=-, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{2}^{-}, r=1}^{[J=2, L=1, S=1]}=O_{T_{2}^{-}, r=1}^{[J=2, L=3, S=1]}=O_{T_{2}^{-}, r=1} \\
& \begin{array}{l}
E^{-}: \\
O_{E^{-}, r=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)-\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+\mathrm{P}\left(e_{y}\right) V_{y}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{y}\left(e_{y}\right)
\end{array} \\
& -2 \mathrm{P}\left(e_{z}\right) V_{z}\left(-e_{z}\right)+2 \mathrm{P}\left(-e_{z}\right) V_{z}\left(e_{z}\right) \\
& O_{E^{-}, r=1}^{\left[J=2, P=-, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{E^{-}, r=1}^{[J=2, L=1, S=1]}=O_{E^{-}, r=1}^{[J=2, L=3, S=1]}=O_{E^{-}, r=1} \\
& O_{A_{1}^{+}}=O_{A_{2}^{+}}=O_{A_{2}^{-}}=O_{E^{+}}=0 .
\end{aligned}
$$

Example: $\mathrm{P}(\mathrm{p}) \mathrm{V}(-\mathrm{p})$ operators

```
\(A_{1}^{-}\):
\(O_{A_{1}^{-}, r=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)-\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+\mathrm{P}\left(e_{y}\right) V_{y}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{y}\left(e_{y}\right)\)
        \(+\mathrm{P}\left(e_{z}\right) V_{z}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{z}\left(e_{z}\right)\)
```

$O_{A_{1}^{-}, r=1}^{\left[J=0, m_{J}=0, P=-, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{A_{1}^{-}, r=1}^{\left[J=0, m_{J}=0, L=1, S=1\right]}=O_{A_{1}^{-}, r=1}$

	projection operators	$T_{1}^{+}:$$\begin{aligned} & O_{T_{1}^{+}, r=1, n=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)+\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right) \\ & O_{T_{1}^{+}, r=1, n=2}=\mathrm{P}\left(e_{y}\right) V_{x}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{x}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{x}\left(-e_{z}\right)+\mathrm{P}\left(-e_{z}\right) V_{x}\left(e_{z}\right) \end{aligned}$	
provides lin. combination of projection operators O_{n} that enhances the coupling to state with continuum ($J^{\mathrm{P}}, \lambda_{\mathrm{V}}$)	\& helicity operators	$\left\{\begin{array}{l} O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=2} \\ O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=1} \end{array}\right.$	$\begin{aligned} & \mathrm{J}^{\mathrm{P}}=1^{+}, \lambda_{\mathrm{V}}=0 \\ & \mathrm{~J}^{\mathrm{P}}=1^{+}, \lambda_{\mathrm{V}}=1 \end{aligned}$
provides lin. combination of projection operators O_{n} that enhances the coupling to state with continuum ($J^{\mathrm{P}}, \mathrm{S}, \mathrm{L}$)	partial-wave operators	$\left\{\begin{array}{l} O_{T_{1}^{+}, r=1}^{[J=1, L=0, S=1]}=O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \\ O_{\left.T_{1}^{+}, r=1,1,2=S=1\right]}^{[J=2}=-2 O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \end{array}\right.$	$\begin{aligned} & J^{P}=1^{+}, S=1, L=0 \\ & J^{P}=1^{+}, S=1, L=2 \end{aligned}$

$$
\begin{aligned}
& T_{1}^{-}: \\
& O_{T_{1}^{-}, r=1}=-\mathrm{P}\left(e_{y}\right) V_{z}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{z}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{y}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{y}\left(e_{z}\right)
\end{aligned}
$$

J	$\Gamma\left(\operatorname{dim}_{\Gamma}\right)$	
0	$A_{1}(1)$	
$\frac{1}{2}$	$G_{1}(2)$	
1	$T_{1}(3)$	
$\frac{3}{2}$	$H(4)$	
$\frac{3}{2}$	$E(2) \oplus T_{2}(3)$	
$\frac{5}{2}$	$H(4) \oplus G_{2}(2)$	
3	$A_{2}(1) \oplus T_{1}(3) \oplus T_{2}(3)$	$O_{1}^{+}:$
row=1 provided	$O_{T_{1}^{+}, r=1}^{[J=1, L=0, S=1]}=P(0) V_{x}(0)$	

Conventions for row
Bernard et al. , 0806.4495
rows of T1: (x, y, z)
rows of T2: $(y z, x z, x y)$

$$
O_{T_{1}^{-}, r=1}^{\left[J=1, P=-, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{1}^{-}, r=1}^{[J=1, L=1, S=1]}=O_{T_{1}^{-}, r=1}
$$

T_{2}^{+}:
$O_{T_{2}^{+}, r=1}=\mathrm{P}\left(e_{y}\right) V_{x}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{x}\left(e_{y}\right)-\mathrm{P}\left(e_{z}\right) V_{x}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{x}\left(e_{z}\right)$
$O_{T_{2}^{+}, r=1}^{\left[J=2, P=+, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{2}^{+}, r=1}^{[J=2, L=2, S=1]}=O_{T_{2}^{+}, r=1}$
T_{2}^{-}:
$O_{T_{2}^{-}, r=1}=\mathrm{P}\left(e_{y}\right) V_{z}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{z}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{y}\left(-e_{z}\right)-\mathrm{P}\left(-e_{z}\right) V_{y}\left(e_{z}\right)$
$O_{T_{2}^{-}, r=1}^{\left[J=2, P=-, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{2}^{-}, r=1}^{[J=2, L=1, S=1]}=O_{T_{2}^{-}, r=1}^{[J=2, L=3, S=1]}=O_{T_{2}^{-}, r=1}$
$E^{-}:$
$O_{E^{-}, r=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)-\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+\mathrm{P}\left(e_{y}\right) V_{y}\left(-e_{y}\right)-\mathrm{P}\left(-e_{y}\right) V_{y}\left(e_{y}\right)$

$$
-2 \mathrm{P}\left(e_{z}\right) V_{z}\left(-e_{z}\right)+2 \mathrm{P}\left(-e_{z}\right) V_{z}\left(e_{z}\right)
$$

$O_{E^{-}, r=1}^{\left[J=2, P=-, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{E^{-}, r=1}^{[J=2, L=1, S=1]}=O_{E^{-}, r=1}^{[J=2, L=3, S=1]}=O_{E^{-}, r=1}$

$\mathrm{P}(1) \mathrm{V}(-1)$ operators, $\mathrm{T}_{1}{ }^{+}$, row=r=1

$$
\begin{aligned}
& T_{1}^{+}: \\
& \text {projection op. } \quad\left\{\begin{array}{l}
O_{T_{1}^{+}, r=1, n=1}=\mathrm{P}\left(e_{x}\right) V_{x}\left(-e_{x}\right)+\mathrm{P}\left(-e_{x}\right) V_{x}\left(e_{x}\right) \\
O_{T_{1}^{+}, r=1, n=2}=\mathrm{P}\left(e_{y}\right) V_{x}\left(-e_{y}\right)+\mathrm{P}\left(-e_{y}\right) V_{x}\left(e_{y}\right)+\mathrm{P}\left(e_{z}\right) V_{x}\left(-e_{z}\right)+\mathrm{P}\left(-e_{z}\right) V_{x}\left(e_{z}\right)
\end{array}\right. \\
& \text { partial-wave op. }\left\{O_{T_{1}^{+}, r=1}^{[J=1, L=0, S=1]}=O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \quad \mathrm{~J}^{\mathrm{P}}=1^{+}, \mathrm{S}=1, \mathrm{~L}=0\right. \\
& O_{T_{1}^{+}, r=1}^{[J=1, L=2, S=1]}=-2 O_{T_{1}^{+}, r=1, n=1}+O_{T_{1}^{+}, r=1, n=2} \quad \mathrm{~J}^{\mathrm{P}}=1^{+}, \mathrm{S}=1, \mathrm{~L}=2 \\
& \begin{cases}O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}=0, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=1} & \mathrm{~J}^{\mathrm{P}}=1^{+}, \lambda_{\mathrm{V}}=0 \\
O_{T_{1}^{+}, r=1}^{\left[J=1, P=+, \lambda_{V}= \pm 1, \lambda_{P}=0\right]}=O_{T_{1}^{+}, r=1, n=2} & \mathrm{~J}^{\mathrm{P}}=1^{+}, \lambda_{\mathrm{V}}=1\end{cases}
\end{aligned}
$$

Partial-wave and helicity operators expressed in terms of projection operators throughout.

Some other examples of HH operators

PN, $|p|=1, H^{+}$irrep, $J^{P}=3 / 2^{+}, 5 / 2^{+}, . .(n=1)$

$$
\begin{aligned}
& \mathrm{H}^{+} \\
& O_{H^{+}, r=1}=-i N_{\frac{1}{2}}\left(-e_{x}\right) \mathrm{P}\left(e_{x}\right)+i N_{\frac{1}{2}}\left(e_{x}\right) \mathrm{P}\left(-e_{x}\right)-N_{\frac{1}{2}}\left(-e_{y}\right) \mathrm{P}\left(e_{y}\right)+N_{\frac{1}{2}}\left(e_{y}\right) \mathrm{P}\left(-e_{y}\right) \\
& O_{H^{+}, r=1}^{\left[J=\frac{3}{2}, m_{J}=\frac{3}{2}, P=+, \lambda_{N}= \pm \frac{1}{2}, \lambda_{P}=0\right]}=O_{H^{+}, r=1}^{\left[J=\frac{3}{2}, m_{J}=\frac{3}{2}, L=1, S=\frac{1}{2}\right]}=O_{H^{+}, r=1} \\
& N N^{\prime},|p|=1, T_{2}{ }^{+} \text {irrep, } J^{P}=2^{+}, . .(n=1) \\
& O_{T_{2}, r=1}=-\mathrm{N}_{\frac{1}{2}}\left(e_{y}\right) \mathrm{N}^{\prime}\left(-e_{y}\right)-\mathrm{N}_{\frac{1}{2}}\left(-e_{y}\right) \mathrm{N}_{\frac{1}{2}}^{\prime}\left(e_{y}\right)+\mathrm{N}_{-\frac{1}{2}}\left(e_{y}\right) \mathrm{N}^{\prime}{ }_{-\frac{1}{2}}\left(-e_{y}\right)+\mathrm{N}_{-\frac{1}{2}}\left(-e_{y}\right) \mathrm{N}^{\prime}{ }_{-\frac{1}{2}}\left(e_{y}\right) \\
& +\mathrm{N}_{\frac{1}{2}}\left(e_{z}\right) \mathrm{N}_{\frac{1}{2}}^{\prime}\left(-e_{z}\right)+\mathrm{N}_{\frac{1}{2}}\left(-e_{z}\right) \mathrm{N}_{\frac{1}{2}}^{\prime}\left(e_{z}\right)-\mathrm{N}_{-\frac{1}{2}}\left(e_{z}\right) \mathrm{N}^{\prime}{ }_{-\frac{1}{2}}\left(-e_{z}\right)-\mathrm{N}_{-\frac{1}{2}}\left(-e_{z}\right) \mathrm{N}_{-\frac{1}{2}}^{\prime}\left(e_{z}\right) \\
& O_{T_{2}^{+}, r=1}^{\left[J=2, P=+, \lambda_{N}=\frac{1}{2}, \lambda_{N^{\prime}}=-\frac{1}{2}\right]}=O_{T_{2}^{+}, r=1}^{\left[J=2, P=+, \lambda_{N}=-\frac{1}{2}, \lambda_{N^{\prime}}=\frac{1}{2}\right]}=O_{T_{2}^{+}, r=1}^{[J=2, L=2, S=1]}=O_{T_{2}^{+}, r=1}
\end{aligned}
$$

For all irreps we verified:

- all three methods give consistent operators
- the number of linearly independent operators agree with Moore \& Fleming (2006) [this reference indicates which CG are non-zero but does not provide their values]

$H(p) H(-p),|p|>1$

- The explicit expressions are not provided in the paper as it would get to lengthy
- One can straightforwardly obtain them using the
- general relations for three methods and
- all necessary technical details given in the paper
- $|p|=1$ expressions can be used as cross-check

Conclusions

- We construct $\mathrm{H}(\mathrm{p}) \mathrm{H}(-\mathrm{p})$ operators for scattering of particles with spin
- General expressions for operators given in three formally independent methods
- Consistent results found in three methods
\checkmark Projection operators O_{n} : gives little guidance on underlying quantum numbers
\triangleleft Partial-wave operators: provides linear combinations O_{n} to enhance coupling to (J, S, L)
\triangleleft Helicity operators: provides linear combinations O_{n} to enhance coupling to (J, P, $\lambda 1, \lambda 2$)
- Proofs of correct transformation for all three methods. These demonstrate that simple (non-canonical) $H_{m s}(p)$ can be used as building blocks.
- Explicit expressions for PV, PN, VN, NN for p=0,1
- All necessary technical details for explicit construction
- Operators will lead to eigen-energies of HH. These are related to scattering phase shifts for H with arbitrary spin in [Briceno, Phys. Rev. D89, 074507 (2014)]

Backup slides

Transformations of the employed H (see also slide 4)

$$
\begin{aligned}
& R P(p) R^{-1}=P(R p), \quad I P(p) I=-P(-p) \\
& R V_{i}(p) R^{-1}=T_{j i}^{s=1}(R)^{*} V_{j}(R p)=\exp (-i \vec{n} \vec{J} \omega)_{j i} V_{j}(R p), \quad I V_{i}(p) I=-V_{i}(-p) \quad i, j=x, y, z \\
& R N_{m_{s}}(p) R^{-1}=D_{m_{s}^{\prime} m_{s}}^{s}(R)^{*} N_{m_{s}^{\prime}}(R p)=\left[\exp \left(-\frac{i}{2} \vec{n} \vec{\sigma} \omega\right)\right]_{m_{s}^{\prime} m_{s}}^{*} N_{m_{s}^{\prime}}(R p), \quad I N_{m_{s}}(p) I=N_{m_{s}}(-p)
\end{aligned}
$$

Properties of Wigner D matrices

$$
D(R)=D^{\dagger}\left(R^{\dagger}\right), \quad R^{\dagger}=R^{-1}, \quad D\left(R_{1} R_{2}\right)=D\left(R_{1}\right) D\left(R_{2}\right)
$$

Proof: partial-wave operators

Proof of correct transformation properties:

$$
\begin{aligned}
& R_{a} O^{J, m_{J}, S, L} R_{a}^{-1}=\sum_{m_{L}, m_{S}, m_{s 1}, m_{s 2}} C_{L m_{L}, S m_{S}}^{J m_{J}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{S m_{S}} \sum_{R \in O^{(2)}} Y_{L m_{L}}^{*}(\hat{R p}) R_{a} H_{m_{s 1}}(R p) H_{m_{s 2}}(-R p) R_{a}^{-1} \\
& =\sum_{m_{L}, m_{S}, m_{s 1}, m_{s 2}} C_{L m_{L}, S m_{S}}^{J m_{J}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{S m_{S}} \sum_{R \in O_{h}} Y_{L m_{L}}^{*}(\hat{R p}) \\
& \times \sum_{m_{s 1}^{\prime}} D_{m_{s 1} m_{s 1}^{\prime}}^{s_{1}}\left(R_{a}^{-1}\right) H_{m_{s 1}^{\prime}}\left(R_{a} R p\right) \sum_{m_{s 2}^{\prime}} D_{m_{s 2} m_{s 2}^{\prime}}^{s_{2}}\left(R_{a}^{-1}\right) H_{m_{s 2}^{\prime}}\left(-R_{a} R p\right), \\
& Y_{L m_{L}}^{*}(R p)=Y_{L m_{L}}^{*}\left(R_{a}^{-1}\left(R^{\prime} p\right)\right)=\sum_{m_{L}^{\prime}} D_{m_{L} m_{L}^{\prime}}^{L}\left(R_{a}^{-1}\right) Y_{L m_{L}^{\prime}}^{*}\left(R^{\prime} p\right) \quad R^{\prime} \equiv R_{a} R \quad Y_{L m_{L}}^{*}\left(R_{1} p\right)=\sum_{m_{L}^{\prime}} D_{m_{L} m_{L}^{\prime}}^{L}\left(R_{1}\right) Y_{L m_{L}^{\prime}}^{*}(p) \\
& D_{m_{s 1} m_{s 1}^{\prime}}^{s_{1}}\left(R_{a}^{-1}\right) D_{m_{s 2} m_{s 2}^{\prime}}^{s_{2}}\left(R_{a}^{-1}\right)=\sum_{\tilde{S}, \tilde{m}, m_{S}, m_{S}^{\prime}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{\tilde{S}_{\tilde{\prime}} \tilde{m}_{S}} C_{s_{1} m_{s 1}^{\prime}, s_{2} m_{s 2}^{\prime}}^{\tilde{S}, m_{S}^{\prime}} D_{\tilde{m}_{S} m_{S}^{\prime}}^{\tilde{S}}\left(R_{a}^{-1}\right) \quad \sum_{m_{s 1}, m_{s 2}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{S m_{S}} C_{s_{1} m_{s 1}, s_{2} m_{s 2}}^{\tilde{S}, \tilde{m}_{S}}=\delta_{m_{S}, \tilde{m}_{S}} \delta_{S, \tilde{S}} \\
& D_{m_{L} m_{L}^{\prime}}^{L}\left(R_{a}^{-1}\right) D_{\tilde{m}_{S} m_{S}^{\prime}}^{\tilde{S}}\left(R_{a}^{-1}\right)=\sum_{\tilde{J}, \tilde{m}_{J}, m_{J}^{\prime}} C_{L m_{L}, \tilde{\tilde{m}} \tilde{m}_{S}}^{\tilde{J} \tilde{m}_{J}} C_{L m_{L}^{\prime}, \tilde{S} m_{S}^{\prime}}^{\tilde{J}, m_{J}^{\prime}} D_{\tilde{m}_{J} m_{J}^{\prime}}^{\tilde{J}}\left(R_{a}^{-1}\right) \quad \sum_{m_{L}, m_{S}} C_{L m_{L}, S m_{S}}^{J m_{J}} C_{L m_{L}, S m_{S}}^{\tilde{J}, \tilde{m}_{J}}=\delta_{m_{J}, \tilde{m}_{J}} \delta_{J, \tilde{J}} \\
& R_{a} O^{J, m_{J}, S, L} R_{a}^{-1}= \\
& =\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R_{a}^{-1}\right) \sum_{m_{L}^{\prime}, m_{S}^{\prime}, m_{s 1}^{\prime}, m_{s 2}^{\prime}} C_{L m_{L}^{\prime}, S m_{S}^{\prime}}^{J m_{S}^{\prime}} C_{s_{1} m_{s 1}^{\prime}, s_{2} m_{s 2}^{\prime}}^{S m_{s}^{\prime}} \sum_{R^{\prime} \in O^{(2)}} Y_{L m_{L}^{\prime}}^{*}\left(\hat{R}^{\prime} p\right) H_{m_{s 1}^{\prime}}\left(R^{\prime} p\right) H_{m_{s 2}^{\prime}}\left(-R^{\prime} p\right) \\
& =\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R_{a}^{-1}\right) O^{J, m_{J}^{\prime}, S, L}
\end{aligned}
$$

Vectors

$$
\begin{aligned}
& V^{\dagger}|0\rangle=|V\rangle=A_{x}\left|V_{x}\right\rangle+A_{y}\left|V_{y}\right\rangle+A_{z}\left|V_{z}\right\rangle \\
& \left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)_{m_{J}=1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
-i \\
0
\end{array}\right), \quad\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)_{m_{J}=0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)_{m_{J}=-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right) \\
& \left(S_{k}\right)_{i j}=-i \epsilon_{i j k} \\
& S_{z}\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)_{m_{J}}=-i\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)_{m_{J}}=m_{J}\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
\end{aligned}
$$

The annihilation operators are obtained by hermitian conjugation, so coefficients are complex conjugated.

