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Mo1va1on	

La$ce	operators		for	sca-ering	of	par1cles	with		spin	 2	

•  Mainly	PP	sca-ering	was	simulated	on	la$ce	up	to	now										sca-ering	phase	shiZ	extracted	(P	has	no	spin)	
	

•  H(1)	H(2)	:	where	one	or	both	H	carry	spin	was	explored	mostly	only	for	L=0	

																						many	interes1ng	channels	s1ll	unexplored,	par1cularly	for	L>0	

	

I	will	consider	construc1on	of		H(1)	H(2)		interpolators			

	where	H	is	one	of	P,V,N	hadrons,	which	is	(almost)	stable	with	respect	to	strong	decay:			

P=psuedoscalar	(JP=0^-)				=	π	,	K,	D,	B,	ηc	,	...	

	V=vector												(JP=1^-)				=	D*,	B*,	J/ψ,	ϒb	,	Bc*,...						(but	not	directly	applicable	to	ρ	as	is	unstable...)	

	N=nucleon								(JP=1/2^+)	=	p,	n,	Λ,	Λc,	Σ,	...															(but	not	directly	applicable	to	N-(1535)	as	is	unstable...)	

	

I	will	consider	interpolators	for	channels	:	

PV:	meson	resonances	and	QQ-like	exo1cs	(e.g.	π	J/ψ,	D	D*	..)	

PN:	baryon	resonances	(e.g.	π	N,	K	N	...)	and	pentaquarks	

NV:	baryon	resonances	and	pentaquarks		
NN:	nucleon-nucleon	and	deuterium,	baryon-baryon			
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•  O=HH	needed	to	create/annihilate	HH	system	

•  En	related	to	phase	shiZs	for	HH	sca-ering		
							-	two	spinless	par1cles	Luscher	(1991):		

							-	two	par1cles		with	arbitrary	spin			

										Briceno,	PRD89,	074507	(2014)	

										(other	authors:	some	specific	cases)		



Some	previous	related	work	on	la$ce	HH	operators		
for	hadrons	with	spin	and	L≠0		
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Par1al-wave	method	for	HH:		
Berkowitz,	Kurth,	Nicolson,	Joo,	Rinaldi,	Strother,	Walker-Loud,	1508.00886		
Wallace,	Phys.	Rev.	D92,	034520	(2015),	[arXiv:1506.05492]	
	
Projec1on	method	for	HH:		
M.	Göckeler	et	al.,	Phys.Rev.	D86,	094513	(2012),	[arXiv:1206.4141].		
	
Helicity	operators	for	single-H:		
Thomas,	Edwards	and	Dudek,	Phys.	Rev.	D85,	014507	(2012),	[arXiv:1107.1930]	
	
Some	aspects	of	helicity	operators	for	HH:		
Wallace,	Phys.	Rev.	D92,	034520	(2015),	[arXiv:1506.05492].			
Dudek,	Edwards	and	Thomas,	Phys.	Rev.	D86,	034031	(2012),	[arXiv:1203.6041].		
	
Which	CG	of	H1	and	H2	to	H1H2	irreps	are	nonzero;	values	of	CG	not	published:	
Moore	and	Fleming,	Phys.	Rev.	D	74,	054504	(2006),	[arXiv:hep-	lat/0607004].			
	
etc	...		
	
However:		for	a	la$ce	prac11oner	who	was	interested		in	a	certain	channel,	for	example	
(PV	sca-ering	in	L=2	or		VN	sca-ering	with	λV=1	and	λN=1/2)			
there	were	s1ll	lots	of	puzzles	to	beat	before	construc1ng	a	reliable	interpolator	..			



Outline	

Sasa	Prelovsek	 La$ce	operators		for	sca-ering	of	par1cles	with		spin	 4	

I	will	present		
	
•  three	different	methods	to	construct	operators	
	
•  illuminate	the	proofs	(given	in	the	paper)	
	
•  verify	they	lead	to	consistent	operators	(that	gives	confidence	in	each	one	of	them)	
	
•  they	lead	to	complementary	physics	info	
	
•  present	explicit	ops	for	PV,	PN,	VN,	NN	for	lowest	two	momentum	shells.		



We	restrict	to	total	momentum	zero	
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H(1)(p)	H(2)(-p)		,		Ptot=0	
	
Advantage	of		Ptot=0:		
•  parity	P	is	a	good	number				
•  channels	with	even	and	odd	L	do	not	mix	in	the	same	irrep			

not	true	for	Ptot≠0	
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	Building	blocks	H:	required	transforma1on	proper1es	of	H	

rota1ons	R					Wigner	D	matrix																															inversion	I	

state	
	

crea1on	field	

	

annihila1on	field	

ms		is	a	good	quantum	number	at	p=0:		
ms	is	not	good	quantum	number	in	general	for	p≠0:	in	this	case	it	denotes	ms	of	corresponding	Hms(p=0)	

to	prove	correct	transforma1on	proper1es	of	HH	

note:		

D	èD*	



Non-prac1cal	choice	of	H:	canonical	fields	H(c)	
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L(p)	is	boost	from	0	to	p;					drawback:	H(c)(p)	depend	on	m,	E,..	

with	correct	transforma1on	proper1es	under	R	and	I	



Non-prac1cal	choice	of	H:	canonical	fields	H(c)	
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L(p)	is	boost	from	0	to	p;					drawback:	H(c)(p)	depend	on	m,	E,..	

with	correct	transforma1on	proper1es	under	R	and	I	

Prac1cal	choice	of	H			
with	correct	transforma1on	proper1es	under	R	and	I	

These	H	are	employed	as	building	block	in	our	HH	operators																		simple	examples	



relevant	rota1ons:																													:		O	with	24	el.	for	J=integer	;	O2	with	48	elements	for	J=half-integer	
The	group	including	inversion	I:									Oh	with	48	el.	for	J=integer	;	O2

h	with	96	elements	for	J=half-integer	

	

The	representa1on		OJ		reducible	under	O(2).	Irreducible	representa1ons	(irreps)	are	denoted	by	Γ	and	rows	r						

Required	transforma1on	proper1es	of	O=HH	
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T(R)	given	for	all	irreps	in		
Bernard,	Lage,		Meißner,	Rusetsky,		
JHEP	2008,	0806.4495	
We	use	same	conven1ons	for	rows.		

good	parity	since	Ptot=0	!	

con1nuum	R	

discrete	R	



“seed”:	Each	Ha	can	have	any	polariza1on	ms	
and	direc1on	p	with	given	|p|.	Different	choices	
lead	to	different	linearly	independent	On	

Method	I:	Projec1on	operators	

8	

	
Some	examples	for	|p|=1:	
PV	in	T1+		,	nmax=2:	

PN	in	H+		,	nmax=1:	

VN	in	H-		,	nmax=3:	

	

Disadvantage:	

not	informa1ve	which	
con1nuum	numbers										
(par1al	wave	L	or	helicity	)	
each	On	corresponds		

	

This	is	remedied	in	next	two	
method.s	

T(R)	given	for	all	irreps	in		
Bernard,	Lage,		Meißner,	Rusetsky,		
JHEP	2008,	0806.4495		

Sasa	Prelovsek	 La$ce	operators		for	sca-ering	of	par1cles	with		spin	



Proof	(in	our	paper	and	backup	slides):	the	correct	transforma1on	proper1es	
	

	follow	from	transforma1ons	of	H	(slide	4)	and	proper1es	of	C,	Ylm	and	D.	

	

Example		of	PV	operators		
		
	
	
Subduc1on	to	irreps	discussed	later	on.			

Method	II:	Par1al-wave	operators	
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Proposed	for	NN	in	[Berkowitz,	Kurth,	Nicolson,	Joo,	Rinaldi,	Strother,	Walker-Loud,	CALLAT,	1508.00886]	There	Ylm*	appears	where	we	have	Ylm	

Clebsch-Gordans																								Spherical	Harmonics	

building	blocks	H		

men1oned	on	slide	6	below		Star1ng	annihila1on	operator		
(before	sobduc1on		to	irreps)	

	



Method	III:	helicity	operators	
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•  building	blocks		in		par1al-wave	operators		are	Hms(p)	and	ms	is	not	good	for	p≠0:	
	
•  Helicity	λ	is	projec1on	of	S	to	p.	It	is	good	also	for	par1cles	in	flight	

•  Defini1on	of	single-hadron	helicity	operator	
								
•  Helicity	is	not	modified	under	R	(p	and	S	transform	the	same	way)	

•  Two-hadron	O:		
	
	
•  Proof:		

[HH	in	con1nuum:	Jacob,	Wick	(1959)]	
[for	single	H	on	la$ce:	HSC,	Thomas	et	al.	(2012)]	
[not	widely	used	for	HH	on	la$ce	yet]	

p	is	arbitrary	momentum	in	given	shell	|p|;		R	does	not	modify	λ1,2	,	so	H1,2	have	chosen	λ1,2	in	all	terms		

rota1on	from	pz	to	p	

good	ms	

R’=RaR	

denoted	by	superscript	h	



Method	III:	helicity	operators	(con1nued)	
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Using	defini1ons	of																																																														and	parity	projec1on		

•  H	are		building	blocks	from	slide	6	below:	ac1ons	of	R	and	I	on	Hms(p)	are	given	in	slide	4	
•  There	are	several	choices	of	R0p	which	rotate	from	pz	to	p:	

								-	these	lead	to	different	phases	in	defini1on	of	Hλ
h	:	inconvenience	

												-	but	they	lead	to	the	same	O	above	(modulo	irrelevant	overall	factor):	so	no	problem	for	such	construc1on	

•  Simple	choice	for	momentum	shell	|p|=1	:		p=pz			and		R0p=Iden1ty	

•  paper	provides	details	how	to	use	func1ons	from	Mathema1ca	for	construc1on,	also	since	Mathema1ca	uses	non-conven1onal	defni1on	of	D		

	

	

	

	

																																																																		

,	choice	of	sign	in	our	paper	



Subduc1on	of	OJ	to	irreducible	representa1ons		
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Par1al-wave	operators			O	J,	mJ,	L,	S	

	

Helicity	operators												O	J,	mJ,	λ1,	λ2	

The	representa1on	OJ	is	irreducible	under	con1nuum	R.	
But	it	is	reducible	under	R	in	discrete	group	la$ce	O(2).		

Operators	that	transform	according	to	irrep	Γ	and	row	r	obtained	via	subduc1on.				

Subduc1on	matrices	S	
[Dudek	et	al.,	PRD82,	034508	(2010)	

	Edwards	et	al,	PRD84,	074508	(2011)]	

con1num	R	 discrete	R	in	discrete	group	O(2)	
subduc1on	

Single-hadron	operators	H:	experience	by	Hadron	Spectrum	collabora1on	Phys.	Rev.	D	82,	034508	(2010)	
•  subduced	operators	O[J]

Γ		carry	memory	of	con1nuum	spin	and	dominantly	couple	to	states	with	this	J	

Expecta1on	for	par1al-wave	and	helicity	operators	HH	obtained	by	subduc1on	:	

•  																									would	dominantly	couple	to	eigen-states	with	con1nuum	(J,L,S)	

•  																								would	dominantly	couple	to	eigen-states	with	con1nuum	(J,λ1,λ2)	

valuable	for	simula1ons	

give	physics	intui1on	on	quant.	num.			

one	last	step	before	reaching	the	results	...			



Explicit		expressions	all	for	H(1)(p)H(2)(-p)	
		

PV,	PN,	VN,	NN		
	

in	three	methods		
	

all	irreps,	|p|=0,1	
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given	in		
[S.	Prelovsek,	U.	Skerbis,	C.B.	Lang,		arXiv:1607.	1607:06738]	



Example:		
P(p)V(-p)	operators	

row=1	provided	

Conven1ons	for	row	
Bernard	et	al.	,	0806.4495		

rows	of	T1:	(x,y,z)	

rows	of	T2:	(yz,xz,xy)	

other	irreps:	O=0		

14	



Example:		
P(p)V(-p)	operators	
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projec1on	operators	

helicity	operators		

par1al-wave		operators	

JP=1+,	λV=0	

JP=1+,	λV=1	

JP=1+,	S=1,L=0	

JP=1+,	S=1,L=2	

provides	lin.	combina1on	of	projec1on	operators	On	that	
enhances	the	coupling	to	state	with	con1nuum	(JP,	λV)	

provides	lin.	combina1on	of	projec1on	operators	On	that	
enhances	the	coupling	to	state	with	con1nuum	(JP,	S,L)	

row=1	provided	

Conven1ons	for	row	
Bernard	et	al.	,	0806.4495		

rows	of	T1:	(x,y,z)	

rows	of	T2:	(yz,xz,xy)	

other	irreps:	O=0		
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P(1)V(-1)	operators,	T1+,	row=r=1	
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JP=1+,	S=1,L=0	

JP=1+,	S=1,L=2	
	
JP=1+,	λV=0	
JP=1+,	λV=1		

projec1on	op.	
	
par1al-wave	op.	
	
	
helicity	op.	

Par1al-wave	and	helicity	operators	expressed	in	terms	of	projec1on	operators	throughout.		



Some	other	examples	of	HH	operators		

Sasa	Prelovsek	 La$ce	operators		for	sca-ering	of	par1cles	with		spin	 15	

PN,	|p|=1,	H+	irrep,	JP=3/2+,	5/2+,..	(n=1)	

NN’	,	|p|=1,	T2+	irrep,	JP=2+,..	(n=1)	

VN,	|p|=1,	H+	irrep,	JP=3/2+,	5/2+,..	(n=1,2,3)	

For	all	irreps	we	verified:	
•  all	three	methods	give	consistent	operators			

•  the	number	of	linearly	independent		operators	agree	with	Moore	&	Fleming	(2006)	 [this	reference	indicates	which	CG	are		
non-zero	but	does	not	provide	their	values]	



H(p)H(-p),		|p|>1	
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•  The	explicit	expressions	are	not	provided	in	the	paper	as	it	would	get	to	lengthy	
	
•  One	can	straigh�orwardly	obtain	them	using	the		
					-		general	rela1ons	for	three	methods	and	
					-	all	necessary	technical	details	given	in	the	paper	
	
•  |p|=1	expressions	can	be	used	as	cross-check		



Conclusions	
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•  We	construct	H(p)H(-p)	operators		for	sca-ering	of	par1cles	with	spin	

•  General	expressions	for	operators	given	in	three	formally	independent	methods	

•  Consistent	results	found	in	three	methods	

	
²  Projec1on	operators	On:		gives	li-le	guidance	on	underlying	quantum	numbers	
²  Par1al-wave	operators:	provides	linear	combina1ons	On	to	enhance	coupling	to	(J,	S,	L)	
²  	Helicity	operators:		provides	linear	combina1ons	On	to	enhance	coupling	to	(J,	P,	λ1,	λ2)	

•  Proofs	of	correct	transforma1on	for	all	three	methods.		
						These	demonstrate	that	simple	(non-canonical)	Hms(p)	can	be	used	as	building	blocks.		

•  Explicit	expressions	for	PV,	PN,	VN,	NN	for	p=0,1	
•  All	necessary	technical	details	for	explicit	construc1on		
	

•  Operators	will	lead	to	eigen-energies	of	HH.		These	are	related	to	sca-ering	phase	shiZs		
				for	H	with	arbitrary	spin	in	[Briceno,	Phys.	Rev.	D89,	074507	(2014)]	

[details	in	the	paper]	



Backup	slides	
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Transforma1ons	of	the	employed	H	(see	also	slide	4)	
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	Proper1es	of	Wigner	D	matrices	



Proof:	par1al-wave	operators	
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Proof	of	correct	transforma1on	proper1es:		



Vectors	
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The	annihila1on		operators	are	obtained	by	hermi1an	conjuga1on,	so	coefficients	are	complex	conjugated.			


