

The University of Manchester

LSND, MiniBooNE and Future Experiments on (Light) Sterile Neutrinos

Georgia Karagiorgi

UK HEP Forum: "Anomalies and Deviations: Looking for Clues of BSM Physics"

The Cosener's House – Nov. 5-6, 2015

All we know conclusively about light neutrinos fits in this picture...

Neutrino oscillation measurements give us

The relative sizes of the color blocks (from oscillation amplitudes, or how much neutrinos oscillate) The m²-spacing of the mass states (from oscillation frequencies, or how "quickly" neutrinos oscillate) All we know conclusively about light neutrinos fits in this picture...

Neutrino oscillation measurements give us

The relative sizes of the color blocks (from oscillation amplitudes, or how much neutrinos oscillate) The m²-spacing of the mass states (from oscillation frequencies, or how "quickly" neutrinos oscillate) All we know conclusively about light neutrinos fits in this picture...

Neutrino oscillation measurements give us

The relative sizes of the color blocks (from oscillation amplitudes, or how much neutrinos oscillate) The m²-spacing of the mass states (from oscillation frequencies, or how "quickly" neutrinos oscillate) Ingredients for neutrino oscillation: neutrinos have non-zero masses + (neutral) leptons mix

weak ("flavour") states

"mass" states

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

3×3 unitary mixing matrix U

Neutrinos are always produced and detected as definite weak ("flavour") eigenstates,

$$|\mathbf{v}_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\mathbf{v}_{i}\rangle$$

mixing matrix element

weak ("flavour") states

"mass" states

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

3×3 unitary mixing matrix U

Neutrinos are always produced and detected as definite weak ("flavour") eigenstates,

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$$

mixing matrix element

Time-evolution of flavour states manifests as oscillations:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \left\langle \nu_{\beta} \left| \nu_{\alpha}(t) \right\rangle \right|^{2} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin^{2} \left[1.27 \Delta m_{i j}^{2} L/E \right] \right.$$
$$\left. + 2 \sum_{i>j} \operatorname{Im} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin \left[2.54 \Delta m_{i j}^{2} L/E \right],$$
$$\Delta m_{i j}^{2} = m_{i}^{2} - m_{j}^{2}$$

Neutrino flux is primarily v_{α} , with very small v_{β} contamination. Look for excess, or **appearance**, of v_{β} events with the "right" energy dependence.

Example: Two masses separated by Δm^2 , and two flavour states ν_{α} and ν_{β}

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2 2\vartheta_{\alpha\beta} \sin^2(1.27\Delta m^2 L/E)$$

Neutrino flux is primarily v_{α} , with very small v_{β} contamination. Look for deficit, or **disappearance**, of v_{α} events with the "right" energy dependence.

Example: Two masses separated by Δm^2 , and two flavour states v_{α} and v_{β}

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2(1.27\Delta m^2 L/E)$$

~2007

~2012

now

The LSND anomaly

Well-predicted neutrino flux and cross-section. Very low $\bar{v_e}$ backgrounds. L~30m.

 $\overline{v_e}$ detection via inverse-beta-decay: $\overline{v_e} + p \rightarrow e^+ + n$ (coincidence signal)

[Phys. Rev. Lett. 75, 2650 (1995); Phys. Rev. Lett. 81,1774 (1998); Phys. Rev. D64, 112007 (2001).]

The LSND anomaly

Observed excess of $\overline{\nu}_e$ in a primarily $\overline{\nu}_\mu$ beam:

Described by "appearance" oscillation probability:

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2} 2\vartheta_{\mu e} \sin^{2}(1.27\Delta m^{2}L/E)$$
$$= (0.264 \pm 0.067 \pm 0.045) \%$$

(3.8 significance)

[Phys. Rev. Lett. 75, 2650 (1995); Phys. Rev. Lett. 81,1774 (1998); Phys. Rev. D64, 112007 (2001).]

LSND

 $\nu_{\mu} \rightarrow \nu_{e}$

Atmospheric

Solar MSW

 $\nu_e \rightarrow \nu_X$

10 -1

 $\nu_{\mu} \rightarrow \nu_{X}$

 $\sin^2 2\theta$

The LSND anomaly

Observed excess of $\overline{\nu}_e$ in a primarily $\overline{\nu}_{\mu}$ beam:

[Phys. Rev. Lett. 75, 2650 (1995); Phys. Rev. Lett. 81,1774 (1998); Phys. Rev. D64, 112007 (2001).]

The LSND anomaly

 $\Delta m_{21}^2 + \Delta m_{32}^2$

Small amplitude and extremely large oscillation frequency (Δm²) --> in conflict with established three-neutrino formalism!

Also, signal not seen by KARMEN experiment with same method at L ≈ 18 m. $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2} 2\vartheta_{\mu e} \sin^{2}(1.27\Delta m^{2}L/E)$

The MiniBooNE anomaly

The MiniBooNE anomaly

[Phys.Rev.Lett.110.161801,2013, see also:

Phys.Rev.Lett.98.231801,2007, Phys.Rev.Lett.102.101802,2009, Phys.Rev.Lett.103:111801,2009, Phys.Rev.Lett.105:181801,2010]

Oscillation signal region: 200-1250 MeV

Antineutrino search: 2.80 excess Excess of events is at both high and "low energy."

Neutrino search: 3.40 excess

Excess of events is at "low energy," E < 475 MeV.

The MiniBooNE anomaly

[Phys.Rev.Lett.110.161801,2013, see also: Phys.Rev.Lett.98.231801,2007, Phys.Rev.Lett.102.101802,2009, Phys.Rev.Lett.103:111801,2009, Phys.Rev.Lett.105:181801,2010]

Antineutrino best fit:

 χ^2 -probability = 66% (Δm^2 , sin²2 θ) = (0.04 eV², 0.88)

Background-only relative to best fit: 0.5%

Neutrino best fit: χ^2 -probability = 6.1% (Δm^2 , sin²2 θ) = (3.14 eV², 0.002)

Background-only relative to best fit: 2%

Both are consistent with oscillations in general, but MiniBooNE antineutrino allowed parameters are in better agreement with LSND parameters. Both MiniBooNE and LSND signatures show up at similar L/E and look like $v_{\mu} \rightarrow v_{e}$ with some probability.

(-) ~--) \

Are they neutrino oscillations?

If so, Δm^2 must be large, and mixing should be small.

(Light) sterile neutrinos: Framework

(Light) sterile neutrinos: Framework

We approximate: $m_1, m_2, m_3 \ll m_4 \rightarrow m_1, m_2, m_3 = 0$

Can MiniBooNE and LSND signatures be explained by (3+1) appearance?

What is the problem?

Appearance experiments and disappearance experiments are incompatible under 3+1, due to lack of ν_{μ} disappearance;

One might try 3+1, 3+2, 3+N, 1+3+1, ...

(Light) sterile neutrinos: Framework

(3+2) global best fit

(3+2) with CP violation cannot explain MiniBooNE low E excess, unless we throw out disappearance constraints! Significant tension is contributed by the MiniBooNE neutrino mode low energy excess

A liquid argon TPC detector. Data taking has begun!

Will definitively be able to address the MiniBooNE Low Energy Excess Anomaly:

Can the excess be confirmed independently?

If it is confirmed, is it electron-like or photon-like?

Run 3493 Event 41075, October 23rd, 2015

MicroBooNE

If an excess is observed and found in single **photon** events,

MicroBooNE could make the first measurement of a novel photon-production mechanism, to be included in neutrino interaction generators, as it could impact future v_e appearance measurements

If the excess is in single electrons events

MicroBooNE could be seeing v_e appearance (sterile neutrino oscillations, NSI, extra dimensions) or be in position to measure some other new production mechanism (?)

Moving forward

• Need tests which will produce unambiguous results.

This requires (probably multiple) definitive measurements.

- Appearance and disappearance
- Shape (L/E) information
- Experimental searches must carefully account for
 - Simultaneous appearance and disappearance effects
 - Neutrino energy reconstruction effects due to cross-section modeling uncertainties
- Global fits must carefully quantify (in)compatibilities
- As we advance toward precision measurements of the tree-neutrino model (e.g. at long-baselines), we must be aware of underlying assumptions.
 See, e.g., added parameter degeneracies in CPV measurements due to sterile neutrinos [Kayser; Gandhi, Masud, Prakash]

(Beyond MicroBooNE:) Short Baseline Neutrino program at Fermilab A second & third LArTPC placed in the BNB at Fermilab, in line with MicroBooNE

Future experiments: SBN at Fermilsb

(Also sensitivity to total active \rightarrow sterile disappearance)

Future experiments:

 v_{e} appearance

 v_{u} disappearance 10 GLO 1σ 2σ 3σ Δm_{41}^2 [eV²] NNN2015] 1 [Giunti, SBN (3yr, 3o) KPipe (3yr, 5o) 10^{-1} 10⁻² 10⁻¹ 1 sin²2ປ_{ມມ}

nuPRISM (J-PARC, Japan) [Wilking@NNN2015] L ≈ 1 km

50 m tall water Cherenkov detector

 $1^{\circ} - 4^{\circ}$ off-axis

can be improved with T2K ND

KPipe (Japan) [arXiv:1510.06994] L ≈ 30-150m 120 m long detector!

Future experiments:

ν_e disappearance

CeSOX (BOREXINO, Italy) 144Ce – 100 kCi [Vivier@TAUP2015] rate: 1% normalization uncertainty 8.5 m from detector center

KATRIN (Germany) Tritium β decay [Mertens@TAUP2015]

STEREO (France) L = 8-12m [Sanchez@EPSHEP2015]

SoLid (Belgium) L = 5-8m [Yermia@TAUP2015]

PROSPECT (USA) L ≈ 7-12m [Heeger@TAUP2015]

DANSS (Russia) L = 10-12m [arXiv:1412.0817]

NEOS (Korea) L = 25m [Oh@WIN2015] The existing landscape of observed SBL signals and null signatures is difficult to interpret as (3+N) sterile neutrino oscillations.

Awaiting new, definitive experimental results which have sufficient sensitivity to address explicit models, and/or new theoretical models.

- How do we quantify compatibility?
- A measure of how well the parameter regions preferred by different subsets of data overlap

$$\chi^2_{PG} = \chi^2_{min,all} - \sum \chi^2_{min,i}$$

compatibility, PG = prob(χ^2_{PG} , ndf_{PG})

• Unlike a χ^2 test, the PG test avoids the problem that a possible disagreement between data sets becomes diluted by data points which are insensitive to the fit

[Maltoni & Schwetz, 2003]

- But, effect of nuisance parameters? [Collin, WIN'15]
 e.g., scaling background normalization can have an effect on ndf_{PG}
- While instructive and useful in understanding the interplay of signals and null results, the reliability of the PG test for providing meaningful quantitative statements must be carefully validated!

[Giunti, NNN2015]