Understanding flavour anomalies

Sebastian
Jäger
US ${ }_{\text {of Sussex }}^{\text {University }}$

UK HEP Forum: Anomalies \& Deviations
Cosener's House, Abingdon, 06/11/2015

Contents

1. Flavour theory primer: SM and Beyond
2. Three beautiful anomalies
3. Kaons strike back !
4. Summary

Flavour theory primer (Express version)

Building blocks

(Ordered by elegance)
spin 1
electromagnetism U(1)
weak interactions SU(2)
strong interactions SU(3)
spin $\mathbf{1 / 2}$

		$\binom{c_{L}}{s_{L}}$		$\binom{t_{L}}{b_{L}}$	t_{R} b_{R}	$Q=+2 / 3$ $Q=-1 / 3$
$\binom{\nu_{e L}}{e_{L}}$		$\binom{\nu_{\mu_{L}}}{\mu_{L}}$		$\binom{\nu_{\tau L}}{\tau_{L}}$	τ_{R}	$\begin{aligned} & Q=0 \\ & Q=-1 \end{aligned}$

spin 0
Higgs - sets mass scale of entire Standard Model depending on point of view:

- worst case LHC scenario (anonymous theorist)
- "the first SUSY particle" (attributed to S Heinemeyer)
- a new lab to look beyond the SM (yesterday's talks)

Dynamics

The discovery of a Higgs scalar and apparent absence of other particles implies the following approximate Lagrangian at length scales between an attometre and a fermi

SU(3) ${ }^{5}$ flavour symmetric kinetic/gauge terms

$$
\mathcal{L}_{\mathrm{SM}} \sum_{f} \bar{\psi}_{f} \gamma^{\mu} D_{\mu} \psi_{f}-\sum_{i, a} \frac{1}{\bar{a}} g_{i} F_{F_{\mu \nu}}^{i a} F^{i a \mu \nu}
$$

$$
-\bar{u}_{R}^{f} Y_{U} \phi^{c \dagger} Q_{L}-\bar{d}_{R}^{i, a} Y_{D} \phi^{\dagger} D_{L}-\bar{e}_{R} Y_{E} \phi^{\dagger} E_{L}-\mu^{2} \phi^{\dagger} \phi-\frac{\lambda}{2}\left(\phi^{\dagger} \phi\right)^{2}
$$

flavour-breaking fermion masses and Higgs couplings

NB: naturalness problem is (mostly) caused by top Yukawa, a flavour-breaking term
Physics addressing naturalness should be flavourful, too

This happens in supersymmetry, extra dim/composite Higgs, ...

Dynamics

The discovery of a Higgs scalar and apparent absence of other particles implies the following approximate Lagrangian at length scales between an attometre and a fermi

SU(3) ${ }^{5}$ flavour symmetric kinetic/gauge terms
flavour-breaking fermion masses and Higgs couplings

NB: naturalness problem is (mostly) caused by top Yukawa, a flavour-breaking term

Dynamics

The discovery of a Higgs scalar and apparent absence of other particles implies the following approximate Lagrangian at length scales between an attometre and a fermi

SU(3) ${ }^{5}$ flavour symmetric kinetic/gauge terms

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SM}} & \sum_{f} \bar{y}_{f} \gamma^{\mu} D_{\mu} \psi_{f}-\sum_{i, a} \bar{y}_{4} g_{i} F_{\mu F}^{i a}{ }^{i a \mu \nu} \\
& -\bar{u}_{R} \Psi_{U} \phi^{c \dagger} Q_{L}-\bar{d}_{R} Y_{D} \phi^{\dagger} D_{L}-\bar{e}_{R} Y_{E} \phi^{\dagger} E_{L}
\end{aligned}
$$

flavour-breaking fermion masses and Higgs couplings

NB: naturalness problem is (mostly) caused by top Yukawa, a flavour-breaking term

This happens in supersymmetry, extra dim/composite Higgs, ...

Flavour physics

all flavour violation in charged weak current
(tree level) neutral current conserves flavor
strong \& electromagnetic preserve flavour

Loop suppression of flavour-changing neutral current processes

BSM flavour physics both motivated and may compete with SM

Rare decays

SM: Loop + CKM suppression of FCNC (GIM)

y_{t} main source of GIM breaking: enhanced sensitivity to top
 e.g. B-Bbar oscillations first indication of a heavy top (Argus 1987)

Charm contribution sometimes sizable/uncertain due to large logarithms and/or nonperturbative QCD effects. Often leading source of uncertainty
BSM: Can compete even in weakly coupled case (MSSM) MSSM: sensitive to stops and their couplings
 Stringent constraints on 1st-2nd generation mixing

In more general cases can have tree-level contributions (Z')

In strongly coupled models may lose loop suppression, flavour most stringent generic constraint absent flavour protection (RS)

What to look for?

Heavy physics with mass scale M described by local effective Lagrangian at energies below M (many incarnations)

Effective Lagrangian dimension-5,6 terms describes all BSM physics to $\mathrm{O}\left(\mathrm{E}^{2} / \mathrm{M}^{2}\right)$ accuracy. Systematic \& simple. E.g.

$Q_{u l}$	预 $l_{r}\left(\bar{l}_{\text {l }} \bar{l}^{\mu} l_{t}\right)$	Buchmuller, Wyler 1986 Grzadkowski, Misiak, Iskrzynski, Rosiek 2010
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	arbitrary (heavy) new physics
$Q_{l q}^{(1)}$	$\left(\overline{\bar{T}}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	
$Q_{1 q}^{(3)}$	$\left(\overline{\bar{l}}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	(Wilson) coefficients

Much slower decoupling with M than in high-pT physics. Possibility to probe well beyond energy frontier.

B physics probes $\mathrm{O}(100)$ operators (more if lepton flavour violation)

2 Three beautiful anomalies

Focus on three anomalies in rare semileptonic decay
b－＞sl｜（I＝muon or electron）

当時三美人
Three beauties of the present day（Utamaro）
＂at first glance their faces seem similar，but subtle differences in their features and expressions can be detected－＂（Wikipedia）

B-> $>\mathrm{K}^{*} \mu^{+} \mu^{-}$angular distribution

[S Cunliffe (LHCb), "LHCb Implications", 03/05/15]

Deviations in lepton charge FB asymmetry (A_{FB}) and angular observable $\mathrm{S}_{5} / \mathrm{P}_{5}{ }^{\prime}$

Rare leptonic B decays

CMS \& LHCb arXiv:1411.4413

Central value quite far from SM - not significant however good prospects from LHCb, (increasingly) CMS; eventually HL-LHC (completely dominated by experimental error)

Lepton universality violation

$$
R_{K}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left[B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right]}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{q_{\min }^{2}}^{q_{\max }} \frac{\mathrm{d} \Gamma\left[B^{+} \rightarrow K^{+} e^{+} e^{-}\right]}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}
$$

naively $=1$ in SM if lepton masses negligible (as seems the case for $1 \mathrm{GeV}^{2}$ lower cutoff) Hiller, Krueger 2003
a large effect!
Main theory concern is role of soft photon radiation. Informal consensus that the true theoretical uncertainty is at percent level at most. (Various unpublished studies / works in progress.)

Can it be BSM physics?

C_{9} : coupling of a particular four-fermion operator

$$
Q_{9 V}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} l\right)
$$

C_{10} : coupling of another four-fermion operator

$$
Q_{10 A}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} \gamma^{5} l\right)_{A}
$$

- both can be obtained from Z' exchanges
- or leptoquarks
- for minimal lepton coupling to Z^{\prime} : C_{9} favoured by low-energy precision constraints (model predicted $\mathrm{R}_{\mathrm{K}} \neq 1$, too)

Altmannshofer-Gori-Pospelov-Yavin
Possible problem: BSM effects in C ${ }_{9}$ can be mimicked by a range of SM effects - how well are they controlled?

What it cannot be

C_{7} : electromagnetic dipole coupling (strongly constrained by inclusive $\mathrm{B}->\mathrm{X}_{\mathrm{s}}$ gamma)

operators with right-handed strangequarks (constrained by other angular observables)

SJ, Martin Camalich 2012, 2014; various global fits 2014-2015

+ results on $B->K^{*} e^{+} e^{-}$
JHEP 1504 (2015) 064

operators with scalar or pseudoscalar couplings
(gigantic effects in B_{s}-> mu mu due to $\mathrm{SU}(2) \mathrm{xU}(1)$ symmetry)

Global fits

Fits of weak Hamiltonian to data on $\mathrm{B}->\mathrm{K}\left({ }^{*}\right) l l$, $\mathrm{Bs}->\mathrm{mu} \mathrm{mu}$, B->Xs gamma, B->phi II, B->K*gamma prefer non-SM values.

also: Bobeth et al; Hurth-Mahmoudi; Ciuchini et al (in prep); Ghosh et al,...
Most agree that best fit is for $\mathrm{C}_{9}{ }^{\mathrm{NP}} \sim-1 . .-2$ but differ on significance
Some level of degeneracy $\mathrm{C}_{9} / \mathrm{C}_{10}$ (branching fractions - green band); angular observables prefer C_{9}

One leptoquark realisation

Leptoquark

slides from
M Schmaltz
at LHCb Implications, 05/11/2015

Possible issues

$\lambda=+1 / 0 /-1$ helicity of vector meson

$\lambda=0$ and $\lambda=-1$ amplitudes involve two nonperturbative form factors each, and nonlocal ("quark loop") contributions. Implies degeneracies between C_{9} and nonperturbative physics. (Eg, rescale V- and C_{9} by opposite amount.)

Can one explain apparent BSM C9 by either form factor uncertainties or underestimated long-distance charm?

Form factor relations

The heavy-quark limit is highly predictive both for form factor ratios and for virtual-charm effects, for instance:

$$
\begin{aligned}
\frac{T_{-}\left(q^{2}\right)}{V_{-}\left(q^{2}\right)}= & 1+\frac{\alpha_{s}}{4 \pi} C_{F}\left[\ln \frac{m_{b}^{2}}{\mu^{2}}-L\right]
\end{aligned}+\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{2} \frac{\Delta F_{\perp}}{V_{-}} \text {where } \quad L=-\frac{2 E}{m_{B}-2 E} \ln \frac{2 E}{m_{B}}
$$

- Eliminates form factor dependence from some observables (eg P_{2} ' and zero of $A_{F B}$) almost completely, up to Λ / m_{b} power corrections

Descotes-Genon, Hofer, Matias, Virto

- pure HQ limit: T_(0)/V_(0) ~ 1.05 > 1 Beneke,Feldmann 2000
- compare to: $T(0) / V(0)=0.94+/-0.04$ [D Straub, priv comm based on

LCSR computation with correlated parameter variations.
Difference consistent with N / m_{b} power correction; remarkable 5\% error

Forward-backward asymmetry

$\underset{\sim}{\sim}$

blue line: pure heavy-quark limit, no power corrections
light blue: "68\% Gaussian" theory error (including power corrections) pink: full scan over all theory errors

Surprising that pure HQ limit appears tc ${ }^{-0.5}$ agree reasonably well with data !

Such a shift is largely equivalent to a rightward shift of the zero crossing.

Zero crossing in LCSR has been significantly lower than heavy-quark limit for many years (as low as $<3 \mathrm{GeV}^{2}$)

"Clean" observables at present precision have noticeable form factor dependence

(Ignore $6 . .8 \mathrm{GeV}$ bin, above perturbative charm threshold and very close to resonances.)
For Gaussian errors [corresponding to what most authors employ], there is a noticeable deviation in a single bin; but also here less drastic than with LCSR-based theory

Charming penguin?

M Valli at LHCb Implications, 03/11/2015 preliminary
prediction involves Bayesian fit of charm loop to data
by design this can account for any effect depending on prior; question is whether posterior is consistent with heavy-quark expansion

C_{10} and $\mathrm{B}_{\mathrm{s}}->\mathrm{mu} \mathrm{mu}$

SM helicity suppression

- NLO QCD corrections [Buchalla,Buras'9399; Misiak,Urban'99]
- leading- m_{t} NLO electroweak corrections [Buchalla,Buras'98]
- uncertainty (from higher orders): $\approx 7 \%$

exp uncertainty will reach this during HL run

- NNLO QCD
- NLO EW
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser'13]
missing $\mathcal{O}\left(\alpha_{e m}\right)$
- no enhancement factor (like $\frac{1}{\sin ^{2} \theta_{W}}, \frac{m_{t}^{2}}{M_{W}^{2}}$ or $\ln ^{2} \frac{M_{W}^{2}}{\mu_{b}^{2}}$)
- soft Bremsstrahlung: $B_{s} \rightarrow \mu^{+} \mu^{-}+(n \gamma)(n=0,1,2, \ldots)$
- Can QED corrections ($\alpha_{e m} / \pi \approx 2 \times 10^{-3}$) remove helicity suppression factor $\left(m_{\mu}^{2} / M_{B_{c}}^{2} \approx 10^{-4}\right)$?
helicity suppression remains

New prediction

$$
{\overline{R_{o l}}=\underline{\overline{\mathcal{B}}_{q 1}}=\xlongequal{1+\mathcal{A}_{\Delta r}^{\prime \prime} y_{q}}\left(|S|^{2}+\mid P\right]}_{P}
$$

$$
R_{s}=\left(\frac{f_{s_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} v_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615}
$$

C_{10} and $\mathrm{B}_{\mathrm{s}}->\mathrm{mu} \mathrm{mu}$

SM helicity

 suppression- NLO QCD corrections [Buchala,Buras'93'99; Misiak,Urban'99]
- leading- m_{t} NLO electroweak corrections [Buchalla,Buras'98]
- uncertainty (from higher orders): $\approx 7 \%$

\exp uncertainty will reach this during HL run

- NNLO QCD
- NLO EW
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser'13]
missing $\mathcal{O}\left(\alpha_{e m}\right)$
- no enhancement factor (like $\frac{1}{\sin ^{2} \theta_{w}}, \frac{m_{t}^{2}}{M_{w}^{2}}$ or $\ln ^{2} \frac{M_{w}^{2}}{\mu_{b}^{2}}$)
- soft Bremsstrahlung: $B_{s} \rightarrow \mu^{+} \mu^{-}+(n \gamma)(n=0,1,2, \ldots)$
- Can QED corrections ($\alpha_{e m} / \pi \approx 2 \times 10^{-3}$) remove helicity suppression factor ($m_{\mu}^{2} / M_{B_{e}}^{2} \approx 10^{-4}$)?
helicity suppression remains

New prediction

$$
\overline{\bar{B}}_{o l}=\underline{\overline{\bar{B}}_{q}}=\underline{\underline{1+\mathcal{A}_{r r}^{\prime \prime} y_{q}}\left(\left|S^{2}+|P|\right.\right.}
$$

Further LUV tests

SM predicts lepton universality to great accuracy. In particular, apart from lepton mass effects all helicity amplitudes coincide and hence, to our accuracy, the theory error on any LUV ratio or difference is zero. Altmannshofer, Straub; Hiller, Schmallz; SJ, Martin Camalich

Two particular classes of observables:

$$
\begin{array}{ll}
R_{K_{X}^{*}}=\frac{\mathcal{B}\left(B \rightarrow K_{X}^{*} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K_{X}^{*} e^{+} e^{-}\right)} . & X=L, T \tag{1}\\
R_{i}=\frac{\left\langle\Sigma_{i}^{\mu}\right\rangle}{\left\langle\Sigma_{i}^{e}\right\rangle} & \Sigma_{i}=\frac{I_{i}+\bar{I}_{i}}{2}
\end{array}
$$

(2) lepton-flavour-dependence of position of zero-crossings

$$
\Delta_{0}^{i} \equiv\left(q_{0}^{2}\right)_{I_{i}}^{(\mu)}-\left(q_{0}^{2}\right)_{I_{i}}^{(e)}
$$

What would a signal look like?

Any observed deviation from one $\left(\mathrm{R}_{\mathrm{i}}\right)$ or zero $\left(\Delta_{0}^{i}\right)$ would be a clear BSM signal Different BSM explanations of R_{k} discriminated

3

Kaons strike back

A few words on a new emerging precision observable
... due to fantastic progress in lattice QCD, which can now compute all relevant long-distance effects that used to dominate the theoretical uncertainty
... and we discover a new anomaly

$K^{0}-\bar{K}^{0}$ mixing: long-distance dominance

$\sim \frac{10^{-6}}{M_{W}^{2}} \quad$ top quark loop

$$
\sim \frac{10^{-4}}{M_{W}^{2}} \quad \text { up/charm loop } \quad \text { CKM-enhanced }
$$

$$
k^{2} \sim \Lambda_{\mathrm{QCD}}^{2} \propto\left(V_{u s} V_{u d}^{*}\right)^{2} \frac{1}{M_{W}^{4}} \nsim \mathrm{u} \propto\left(V_{u s} V_{u d}^{*}\right)^{2} \frac{\Lambda_{\mathrm{QCD}}^{2}}{M_{W}^{4}}
$$

CP violating part is short-distance-dominated:
long-distance power-suppressed but CKM-enhanced

$$
\Rightarrow \quad \epsilon_{K}=\mathcal{O}\left(10^{-3}\right)
$$

constraint on $\mathrm{V}_{\text {td }}$
first direct (non-local) calculation of charm/up dominated $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\text {s }}$ mass difference by RBC-UKQCD 2015 - agrees with SM; still large error; no anomaly

CP violation in $K^{0}-\bar{K}^{0}$ mixing

- CP-violating parameter (wrong-CP admixture)
$\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\xi\right)$

nonperturbative object
lattice calculation \& continuum conversion
$\left|\epsilon_{K}^{\mathrm{SM}}\right|=\kappa_{\epsilon} C_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \bar{\eta} \times$
$\left(\left|V_{c b}\right|^{2}(1-\bar{\rho}) \eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

$\kappa_{\epsilon}=0.92 \pm 0.02$ Buras \& Guadagnoli 08
No significant tension at present (NNLO calculation of short distance)

Direct CP violation in $\mathrm{K}_{\mathrm{L}}->$ pi pi

Precisely known from experiment for a decade (could potentially be measured even more precisely at NA62)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \times 10^{-4} \quad \begin{gathered}
\text { average of NA48 } \\
\text { and } \mathrm{KTeV}
\end{gathered}
$$

Theory calculation highly complex:

- weak, bottom, charm scale (at least) to NLO perturbation theory for comparable precision
(many contributors)
- until recently, sizable parametric uncertainties (CKM, top mass, strange mass)
- until very recently, only crude estimates of nonperturbative hadronic matrix elements (scales $\mathrm{m}_{\mathrm{K}}, \wedge_{\mathrm{QcD}}$). Many conceptual issues for a lattice-QCD implementation

2015: Two pioneering results by RBC-UKQCD collaboration

ε^{\prime} master fomula

Buras, Buchalla, ... 1990; Buras, Jamin 1993;1996; Bosch et al 1999;
Buras, Gorbahn, SJ, Jamin arXiv:1507.06345

$$
\omega_{+}=a \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}=(4.53 \pm 0.02) \times 10^{-2} \quad \begin{aligned}
& \text { from experiment } \\
& \text { Cirigliano et al } 2003 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ieading isospin breaking } \\
& \text { Cirigliano et al } 2003
\end{aligned}
$$

neglect small imaginary part (for simplicity; could easily be restored)

QCD isospin amplitudes
calculate in terms of weak Hamiltonian perturbative NLO Wilson oefficients
\& numerous nonperturbative hadronic matrix elements
minimize number of independent, relevant matrix elements two matrix elements remain: $\left\langle\mathrm{Q}_{6}>_{0}\right.$ (in Im A_{0}), $<\mathrm{Q}_{8}>_{2}$ (in Im A ${ }_{2}$)

Recent progress

2015: First full computation of physical hadronic matrix elements (10 for $\operatorname{Im} \mathrm{A}_{0}$ and 6 for $\operatorname{Im} \mathrm{A}_{2}$) by RBC-UKQCD
removes $\langle\text { Q8> }\rangle_{2}$ as relevant item of error budget (next slide)
RBC-UKQCD, PRD91 (2015) 7,074502 (I=2)
<Q6>0: large uncertainty, but quantified error
RBC-UKQCD, arXiv:1505.07863 (I=0)
Moreover:

- substantial improvement in parametric uncertainties (CKM, m_{t} mainly) over last decade removes these once important sources of uncertainty

However:

- While $\operatorname{Re} A_{0}$ and $\operatorname{Re} A_{2}$ known from data, better use this only in $\mathrm{V}-\mathrm{A} x \mathrm{~V}+\mathrm{A}$ part of $\left(\operatorname{Im} \mathrm{A}_{1} / \operatorname{Re} \mathrm{A}_{1}\right)$, as matrix element cancellations in V-AxV-A part of ratio (missed by RBC-UKQCD)

Result

- combining all errors in quadrature:

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(1.9 \pm 4.5) \times 10^{-4}
$$

Buras, Gorbahn, SJ, Jamin, arXiv:1507.06345
$\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \times 10^{-4}$
average of NA48
and KTeV

- 2.9 sigma discrepancy
- new physics or underestimated error?
- note that the central values differ by an order of magnitude. Reducing the theory error could potentially increase the significance greatly.

Error budget

	quantity	error on $\varepsilon^{\prime} / \varepsilon$	quantity	error on $\varepsilon^{\prime} / \varepsilon$
	$B_{6}^{(1 / 2)}$	4.1	$m_{d}\left(m_{c}\right)$	0.2
RBC-UKQCD	NNLO	1.6	q	0.2
2015	$\hat{\Omega}_{\text {eff }}$	0.7	$B_{8}^{(1 / 2)}$	0.1
	p_{3}	0.6	$\operatorname{Im} \lambda_{t}$	0.1
	$B_{8}^{(3 / 2)}$	0.5	p_{72}	0.1
	p_{5}	0.4	p_{70}	0.1
	$m_{s}\left(m_{c}\right)$	0.3	$\alpha_{s}\left(M_{Z}\right)$	0.1
	$m_{t}\left(m_{t}\right)$	0.3		

- completely dominated by $\left\langle Q_{6}\right\rangle_{0}$: excellent lattice prospects!
- next is NNLO: perturbation theory at the charm scale? Can reformulate theory for dynamical charm (including lattice)
- isospin breaking: current treatment relies on chiral perturbation theory and $1 / \mathrm{N}$ counting. More complete treatment seems possible on the lattice.

Did not talk about

$V_{u b}$ inclusive/exclusive tension
V_{cb} inclusive/exclusive tension
B -> D(*) tau nu (another credible ~ 4 sigma anomaly)
hadronic B decays (eg penguin puzzle)
nor Higgs flavour physics (H -> tau mu)
charm physics
K_{L}-> $\mathrm{pi}^{0} \mathrm{nu} \mathrm{nu}, \mathrm{K}^{+}$-> $\mathrm{pi}^{+} \mathrm{nu} \mathrm{nu}$ (experimental progress; also some relevant lattice progress)

Conclusions

After run I of LHCb, there is a manifold of "world's first" results.

Discussed several interesting anomalies.
Consistent UV pictures exist. At the moment, the significance of some effects is still under debate.

Prospect of lepton universality violation: R_{k} etc. Theoretically extremely clean.

Several new emerging precision Kaon observables, including direct CP violation in $K_{L}->$ pi pi decays: at present, ~ 3 sigma anomaly with excellent prospects

BACKUP

Rare decays at the LHC

final stat
Leptonic
$\left.B \rightarrow I^{+}\right|^{-}$
decay constant $\langle 0| j^{\mu}|B\rangle \propto f_{B}$

semileptonic, radiative

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \mathrm{I}^{+} \mathrm{I}, \mathrm{~K}^{*} \mathrm{Y}
$$

mainly form factors
$\langle\pi| j^{\mu}|B\rangle \propto f^{B \pi}\left(q^{2}\right)$
charmless hadronic matrix element $B \rightarrow \pi \pi, \pi K, \phi \phi, \ldots \quad\langle\pi \pi| Q_{i}|B\rangle$

Crucial theory input provided by lattice QCD.
Heavy-quark expansions/QCD factorisation, light-cone sum rules Intense theory-experiment interaction in recent years

Rare decays at the LHC

semileptonic, radiative $B \rightarrow K^{*} I^{+} I^{-}, K^{*} Y$
decay constant $\langle 0| j^{\mu}|B\rangle \propto f_{B}$
mainly form factors
$\langle\pi| j^{\mu}|B\rangle \propto f^{B \pi}\left(q^{2}\right)$
charmless hadronic matrix element $B \rightarrow \pi \pi, \pi K, \phi \phi, \ldots \quad\langle\pi \pi| Q_{i}|B\rangle$

Crucial theory input provided by lattice QCD.
Heavy-quark expansions/QCD factorisation, light-cone sum rules Intense theory-experiment interaction in recent years

