
Understanding flavour 
anomalies

Sebastian
Jäger

UK HEP Forum: Anomalies & Deviations 
Cosener’s House, Abingdon, 06/11/2015



Contents

1. Flavour theory primer: SM and Beyond
 

2. Three beautiful anomalies

3. Kaons strike back !

4. Summary



1 
Flavour theory primer

(Express version)



Building blocks
(Ordered by elegance)
spin 1
     electromagnetism U(1)
     weak interactions SU(2)
     strong interactions SU(3)

spin 1/2

spin 0  
    Higgs - sets mass scale of entire Standard Model
    depending on point of view:
         - worst case LHC scenario (anonymous theorist)
         - “the first SUSY particle” (attributed to S Heinemeyer)
         - a new lab to look beyond the SM (yesterday’s talks)

Standard Model

All matter is composed of twelve “flavors” of spin-1/2 fermion,

including three neutrinos, each with different mass.
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Almost all interaction is due to gauge forces. Colored fermions feel

the strong interactions due to the gluon field Gµ. They and the

charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not

dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3
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Dynamics
The discovery of a Higgs scalar and apparent absence of other 
particles implies the following approximate Lagrangian at 
length scales between an attometre and a fermi

NB: naturalness problem is (mostly) caused
by top Yukawa, a flavour-breaking term

Physics addressing naturalness should be flavourful, too

This happens in supersymmetry, extra dim/composite Higgs, ...

Lgauge =

∑

f

ψ̄fγ
µDµψf −

∑

i,a

1

4
giF

ia
µνF iaµν

Le↵ = LSM

�VH = �µ2�†�� �

2
(�†�)2

LSM = ((covariant) kinetic terms + LY+

BR(B0
s ! µ+µ�) = (2.9+1.1

�1.0)⇥ 10�9

BR(B0 ! µ+µ�) < 7.4⇥ 10�10 [95% CL]

CMS/LHCb world averages:

BR(B0
s ! µ+µ�) = (2.9± 0.7)⇥ 10�9

BR(B0
d ! µ+µ�) = (3.6+1.6

�1.4)⇥ 10�10

Bobeth et al predictions:

BR(B0
s ! µ+µ�) = (3.65± 0.23)⇥ 10�9

BR(B0
d ! µ+µ�) = (1.06± 0.09)⇥ 10�10
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flavour-breaking fermion masses and Higgs couplings

LY = −ūRYUφc†QL − d̄RYDφ†DL − ēRYEφ†EL

EW scale setting

H

f
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S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.
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Flavour physics

strong & electromagnetic preserve flavour

Loop suppression of flavour-changing neutral
current processes

BSM flavour physics both motivated and may compete with 
SM

Weak interactions

W+ violates flavor (mixes generations), Z0 does not.

W+

VussL uL

Z0

fi fj
δij

“charged current”
no tree-level flavor-changing

neutral currents (FCNC)

Gauge invariance⇒ V is unitary matrix: CKM matrix

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ≈




1 − 1

2λ2 λ Aλ3(ρ − iη)
−λ 1 − 1

2λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1





Symmetries of Lagrangian ⇒ only four independent parameters λ,

A, ρ, η. Only one of them (η) complex. Breaks CP -invariance.
What B-mesons tell us about the Standard Model and “New Physics” – p.4
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all flavour violation in charged weak current

(tree level) neutral current conserves flavor
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Rare decays
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MSSM: sensitive to stops and their couplings
Stringent constraints on 1st-2nd generation mixing

In more general cases can have tree-level
contributions (Z’)

In strongly coupled models may lose loop 
suppression, flavour most stringent generic
constraint absent flavour protection (RS)

1977  τ lepton and bottom quark discovered 

1983  W and Z bosons produced

1987  ARGUS measures Bd - Bd mass difference
        First indication of a heavy top

        The diagram depends quadratically on mt

1995 top quark discovered at CDF & D0

2012  Higgs discovered, SM complete

2015-                     LHC run II: SUSY, new strong
                              interactions,  extra dimensions, ...
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Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.
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Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not
dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3

?

Tuesday, 19 May 15

e.g. B-Bbar oscillations first
indication of a heavy
top (Argus 1987)

SM: Loop + CKM suppression of FCNC  (GIM)

yt main source of GIM breaking: enhanced sensitivity to top

BSM: Can compete even in weakly coupled case  (MSSM)

Charm contribution sometimes sizable/uncertain
due to large logarithms and/or nonperturbative 
QCD effects. Often leading source of uncertainty

u, c,



What to look for?
Heavy physics with mass scale M described by local effective 
Lagrangian at energies below M (many incarnations)

Effective Lagrangian dimension-5,6 terms describes all BSM physics 
to O(E2/M2) accuracy. Systematic & simple. E.g.

Much slower decoupling with M than in high-pT physics. Possibility to 
probe well beyond energy frontier.

B physics probes O(100) operators (more if lepton flavour violation)

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
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[
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TCuβr
] [
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]
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]
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]
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k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.

4

Buchmuller, Wyler 1986
Grzadkowski, Misiak, Iskrzynski, Rosiek 2010

operators (vertices) are catalogued for 
arbitrary (heavy) new physics

Only trace of BSM physics is in their 
(Wilson) coefficients



2   Three beautiful anomalies

当時三美人
Three beauties of the present day (Utamaro)

“at first glance their faces seem similar, but subtle 
differences in their features and expressions can be 
detected—” (Wikipedia)

Focus on three anomalies in
rare semileptonic decay
b -> s l l   (l = muon or electron)
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B->K*µ+µ- angular distribution
1. Maximum likelihood fit
Results
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More results and full set of asymmetries, Aj [in backup]. All Aj consistent with zero.

S.Cunliffe 03-11-15 Full angular analysis B0 ! K⇤0µ+µ� 11/24

1. Maximum likelihood fit
Results
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Tension from 1 fb�1 analysis remains. Now split over two bins of 2.8� and 3.0�.
Blue points are the 1 fb�1 subset.

S.Cunliffe 03-11-15 Full angular analysis B0 ! K⇤0µ+µ� 12/24

Deviations in lepton charge FB asymmetry (AFB)
and angular observable S5 / P5’

[S Cunliffe (LHCb), “LHCb Implications”, 03/05/15]



Central value quite far from SM - not significant however

good prospects from LHCb, (increasingly) CMS; eventually HL-LHC
(completely dominated by experimental error)
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Figure 3 | Likelihood contours in the B(B0 ! µ+µ�) versus B(B0
s ! µ+µ�) plane.

The (black) cross on panel (a) marks the best-fit central value. The SM expectation and its un-
certainty is shown as the (red) marker. Each contour encloses a region approximately correspond-
ing to the reported confidence level. Variations of the test statistic �2�lnL for B(B0

s

! µ+µ�)
and B(B0 ! µ+µ�) are shown on panels (b) and (c), respectively. The dark and light (cyan)
areas define the ±1� and ±2� confidence intervals for the branching fraction, respectively. The
SM prediction and its uncertainty for each branching fraction is denoted with the vertical (red)
band.

the two branching fractions.
The combined fit result is shown for all 20 categories in Extended Data Fig. 1. To

represent the result of the fit in a single dimuon invariant mass spectrum, the mass
distributions of all categories, weighted according to values of S/(S + B), where S is the
expected number of B0

s

signal and B is the number of background events under the B0

s

peak
in that category, are added together and shown in Fig. 2. The result of the simultaneous
fit is overlaid. An alternative representation of the fit to the dimuon invariant mass
distribution for the six categories with the highest S/(S + B) value for CMS and LHCb,
as well as displays of events with high probability to be genuine signal decays, are shown
in the Extended Data Figs. 2–4.

The combined fit leads to the measurements

B(B0

s

! µ+µ�) =
�
2.8 +0.7

�0.6

�
⇥ 10�9 and

B(B0 ! µ+µ�) =
�
3.9 +1.6

�1.4

�
⇥ 10�10,

where the uncertainties include both statistical and systematic sources, the latter con-
tributing 35% and 18% of the total uncertainty for the B0

s

and B0 signals, respectively.
Using Wilks’ theorem28, the statistical significance in unit of standard deviations, �, is
computed to be 6.2 for the B0

s

! µ+µ� decay mode and 3.2 for the B0 ! µ+µ� mode.
For each signal the null hypothesis that is used to compute the significance includes all
background components predicted by the SM as well as the other signal, whose branching

7

CMS & LHCb   arXiv:1411.4413

Rare leptonic B decays



The decay B+ ! K+`+`�, where ` represents either a muon or an electron, is a b ! s
flavor-changing neutral current process. Such processes are highly suppressed in the Standard
Model (SM) as they proceed through amplitudes involving electroweak loop (penguin and box)
diagrams. This makes the branching fraction of B+ ! K+`+`�1 decays highly sensitive to the
presence of virtual particles that are predicted to exist in extensions of the SM [1]. The decay
rate of B+! K+µ+µ� has been measured by LHCb to a precision of 5% [2] and, although the
current theoretical uncertainties in the branching fraction are O(30%) [3], these largely cancel in
asymmetries or ratios of B+! K+`+`� observables [2, 4, 5].

Owing to the equality of the electroweak couplings of electrons and muons in the SM, known
as lepton universality, the ratio of the branching fractions of B+! K+µ+µ� to B+! K+e+e�

decays [6] is predicted to be unity within an uncertainty of O(10�3) in the SM [1,7]. The ratio of
the branching fractions is particularly sensitive to extensions of the SM that introduce new scalar
or pseudoscalar interactions [1]. Models that contain a Z 0 boson have recently been proposed to
explain measurements of the angular distribution and branching fractions of B0! K⇤0µ+µ� and
B+! K+µ+µ� decays [8]. These types of models can also a↵ect the relative branching fractions
of B+! K+`+`� decays if the Z 0 boson does not couple equally to electrons and muons.

Previous measurements of the ratio of branching fractions from e+e� colliders operating at
the ⌥ (4S) resonance have measured values consistent with unity with a precision of 20–50% [9].
This Letter presents the most precise measurement of the ratio of branching fractions and the
corresponding branching fraction B(B+! K+e+e�) to date. The data used for these measurements
are recorded in proton-proton (pp) collisions and correspond to 3.0 fb�1 of integrated luminosity,
collected by the LHCb experiment at center-of-mass energies of 7 and 8TeV.

The value of R
K

within a given range of the dilepton mass squared from q2
min

to q2
max

is given by

R
K

=

R
q

2

max

q

2

min

d�[B+! K+µ+µ�]

dq2
dq2

R
q

2

max

q

2

min

d�[B+! K+e+e�]

dq2
dq2

, (1)

where � is the q2-dependent partial width of the decay. We report a measurement of R
K

for
1 < q2 < 6GeV2/c4. This range is both experimentally and theoretically attractive as it excludes
the B+! J/ (! `+`�)K+ resonant region, and precise theoretical predictions are possible. The
high q2 region, above the  (2S) resonance, is a↵ected by broad charmonium resonances that decay
to lepton pairs [10].

The value of R
K

is determined using the ratio of the relative branching fractions of the decays
B+! K+`+`� and B+! J/ (! `+`�)K+, with ` = e and µ, respectively. This takes advantage
of the large B+! J/ K+ branching fraction to cancel potential sources of systematic uncertainty
between the B+! K+`+`� and B+! J/ (! `+`�)K+ decays as the e�ciencies are correlated
and the branching fraction to B+! J/ K+ is known precisely [11]. This is achieved by using the
same selection for B+! K+`+`� and B+! J/ (! `+`�)K+ decays for each leptonic final state
and by assuming lepton universality in the branching fractions of J/ mesons to the µ+µ� and

1The inclusion of charge conjugate processes is implied throughout this Letter.

1

naively =1 in SM if lepton masses negligible (as seems the case for 1 GeV2 lower 
cutoff)

a large effect !

Main theory concern is role of soft photon radiation.
Informal consensus that the true theoretical uncertainty is at percent level 
at most. (Various unpublished studies / works in progress.)

Results

• Bin: 1 < 𝑞 < 6 𝐺𝑒𝑉 /𝑐
• Value of RK, combined across all these 

trigger categories:
• 𝑅 = 0.745 .

. 𝑠𝑡𝑎𝑡 ± 0.036(𝑠𝑦𝑠𝑡)
• 2.6𝜎 from unity!
• Differential branching fraction
• 𝐵 𝐵 → 𝐾 𝑒 𝑒 =
• 1.56 .

. 𝑠𝑡𝑎𝑡 .
. 𝑠𝑦𝑠𝑡 × 10

28/05/2014 Alexander Shires, TU Dortmund 8

PRELIMINARY, THIS IS A SNEAK PREVIEW
FIRST OFFICIAL ANNOUNCEMENT at LHCP TOMORROW

LHCb,  PRL 113 (2014) 151601

Hiller, Krueger 2003

. The value of the ratio of branching fractions for the dilepton invariant mass squared
is measured to be 0.745+0.090

�0.074

(stat) ± 0.036 (syst). This value is
the most precise measurement of the ratio of branching fractions to date and is compatible

Lepton universality violation



Can it be BSM physics?
C9 : coupling of a particular four-fermion operator

C10 : coupling of another four-fermion operator

- both can be obtained from Z’ exchanges

- or leptoquarks

- for minimal lepton coupling to Z’: C9 favoured by low-energy 
precision constraints (model predicted RK ≠1, too)

Possible problem: BSM effects in C9 can be mimicked by 
a range of SM effects - how well are they controlled?
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distribution, and “clean” observables, in helicity amplitudes. Section 3 contains a detailed

discussion of sources of hadronic uncertainties both in the factorizable and non-factorizable

contributions to the helicity amplitudes, and establishes the suppression of H+

V

. We also

employ a parameterization of form factors at low q2 which transparently separates the

constraints from kinematics and the heavy-quark limit from the issue of modelling power

corrections. Section 4 comprises a detailed phenomenology of the “clean” observables, with

particular attention to the low end of the low-q2 region, which has traditionally been cut o↵

ad hoc at q2 = 1GeV2. We find that the observables P
1

and PCP

3

(in the notation of [58])

in B̄ ! K̄⇤µ+µ� stand out as theoretically cleanest, translating to very good sensivity to

right-handed currents, via the Wilson coe�cients C 0
7

, C 0
9

, and C 0
10

. Specifically, we assess

the (theoretical) sensitivity to the real and imaginary parts of C 0
7

to be on the order of 10%

and 1%, respectively, with the sensitivity coming entirely from the region q2 < 3GeV2,

and dominated by the q2-interval [0.1, 2]GeV2. We also comment on the electronic mode,

which shows a theoretical sensitivity to C 0
7

very similar to the muonic mode. Throughout

we take into account both the small but nonzero values of right-handed Wilson coe�cients

in the SM and the e↵ect of a nonzero muon mass, and show that two known algebraic

relations in the massless case can be modified such that they hold, to excellent accuracy, in

the presence of a finite muon mass all the way down to the kinematic end point. Section 5

contains our conclusions.

2 Amplitudes and kinematic distribution

2.1 Weak Hamiltonian

The process B̄(p) ! M(k)`+`�, where M is a charmless final state (not necessarily a

single meson), is mediated by the �B = 1 weak e↵ective Hamiltonian, which is a sum

of hadronic and semileptonic parts (where “semileptonic” is understood to include the

magnetic penguin terms),

H
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= Hhad
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, (2.1)

with

Hhad

e↵

=
4G

Fp
2

X

p=u,c

�
p


C
1

Qp

1

+ C
2

Qp

2

+
X

i=3...6

C
i

P
i

+ C
8g

Q
8g

�
, (2.2)

Hsl

e↵

= �4G
Fp
2
�
t

h
C
7

Q
7�

+ C 0
7

Q0
7�

+ C
9

Q
9V

+ C 0
9

Q0
9V

+ C
10

Q
10A

+ C 0
10

Q0
10A

(2.3)

+C
S

Q
S

+ C 0
S

Q0
S

+ C
P

Q
P

+ C 0
P

Q0
P

+ C
T

Q
T

+ C 0
T

Q0
T

i
. (2.4)

The operators P
i

are given in [74], the Q
i

are defined as

Q
7�

=
e

16⇡2

m̂
b

s̄�
µ⌫

P
R

Fµ⌫b ,

Q
9V

=
↵
em

4⇡
(s̄�

µ

P
L

b)(l̄�µl) ,

Q
S

=
↵
em

4⇡

m̂
b

m
W

(s̄P
R

b)(l̄l) ,

Q
T

=
↵
em

4⇡

m̂
b

m
W

(s̄�
µ⌫

P
R

b)(l̄�µ⌫P
R

l) ,

Q
8g

=
g
s

16⇡2

m̂
b

s̄�
µ⌫

P
R

Gµ⌫b ,

Q
10A

=
↵
em

4⇡
(s̄�

µ

P
L

b)(l̄�µ�5l)
A

,

Q
P

=
↵
em

4⇡

m̂
b

m
W

(s̄P
R

b)(l̄�5l) ,

(2.5)

– 4 –

Descotes-Genon et al; Altmannshofer et al; 
Crivellin et al; Gauld et al;  ...

Altmannshofer-Gori-Pospelov-Yavin
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discussion of sources of hadronic uncertainties both in the factorizable and non-factorizable
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What it cannot be
C7 : electromagnetic dipole coupling
(strongly constrained by inclusive B->Xs gamma)

operators with right-handed strangequarks
(constrained by other angular observables)

operators with scalar or pseudoscalar couplings
(gigantic effects in Bs  -> mu mu due to SU(2)xU(1) symmetry)

SJ, Martin Camalich 2012, 2014;
various global  fits 2014-2015
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Figure 11: Constraints on complex Wilson coe�cients. Contours are as in fig. 4
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Altmannshofer, Straub
1411.3163v3 [update including 
Moriond 2015 muon data]
(also SJ, Martin Camalich;
Descotes-Genon et al)

1. Maximum likelihood fit
Results
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More results and full set of asymmetries, Aj [in backup]. All Aj consistent with zero.

S.Cunliffe 03-11-15 Full angular analysis B0 ! K⇤0µ+µ� 11/24

LHCb-CONF-2015-002 (muons)

+ results on B->K* e+e-

JHEP 1504 (2015) 064



Global fits
Fits of weak Hamiltonian to data on B->K(*)ll, Bs->mu mu,
B->Xs gamma, B->phi ll, B->K*gamma prefer non-SM values.

Most agree that best fit is for C9NP ~ -1..-2 but differ on significance

Some level of degeneracy C9 / C10  (branching fractions - green 
band); angular observables prefer C9
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Figure 7: For 4 favoured scenarios, we show the 3 � regions allowed by branching ratios

only (dashed green), by angular observables only (long-dashed blue) and by considering

both (red, with 1,2,3 � contours, corresponding to 68.3%, 95.5% and 99.7% confidence

levels). Each constraint corresponding to a subset of data includes also the inclusive and

b ! s� data.

giving RK = 1 by construction,

• (CNP
9 = CNP

10 , CNP
90 = CNP

100 ), disfavoured by the data on Bs ! µµ, which prefer a SM

value for C10, leading to a tension with the value of CNP
9 needed for B ! K⇤µµ

• (CNP
9 = �CNP

10 , CNP
90 = �CNP

100 ) and (CNP
9 = CNP

90 , CNP
10 = CNP

100 ) which could be interesting

28

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re(C9
NP)

R
e (

C
10N

P
)

Figure 4: Allowed regions in the Re(CNP
9 )-Re(C 0

9) plane (left) and the Re(CNP
9 )-Re(CNP

10 ) plane
(right). The blue contours correspond to the 1 and 2� best fit regions. The green
and red short-dashed contours correspond to the 2� regions in scenarios with doubled
form factor uncertainties and doubled uncertainties from sub-leading non-factorizable
corrections, respectively.

all the hadronic uncertainties not related to form factors, i.e. the ones that are parametrized
as in (10) and (11). We observe that the negative value preferred for CNP

9 is above the 2� level
even for these conservative assumptions. We also observe that C 0

9 and CNP
10 are preferentially

positive, although they deviate from 0 less significantly than CNP
9 . The corresponding plots for

all interesting combinations of real Wilson coe�cients are collected in fig. 12 of appendix C,
together with the ��2 values of the corresponding best fit points.
It is also interesting to investigate which observables drive the tensions. In fig. 5, we compare

the global constraints in the Re(CNP
9 )-Re(C 0

9) and Re(CNP
9 )-Re(CNP

10 ) planes to the constraints
one gets only using branching ratios (green) or only using B ! K⇤µ+µ� angular observables
(red). We observe that the angular observables strongly prefer a negative C9 but are not very
sensitive to C 0

9 or C10. The branching ratio constraints have an approximate flat direction
CNP
9 ⇠ �C 0

9 and show a preference for CNP
10 > 0 in particular if CNP

9 > 0. In fact, from
branching ratios alone, one could get a good fit to the data with SM-like C9 and CNP

10 > 0.

3.5. Testing lepton flavour universality

So far, in our numerical analysis we have only considered the muonic b ! sµ+µ� modes
and the lepton flavour independent radiative b ! s� modes to probe the Wilson coe�cients

C(0)
7 , C(0)µ

9 and C(0)µ
10 , where the superscript µ indicates that in the semileptonic operators (3)

and (4) only muons are considered. In this section we will extend our analysis and include
also semileptonic operators that contain electrons. In particular, we will allow new physics in
the Wilson coe�cients Ce

9 and Ce
10 and confront them with the available data on B ! Ke+e�

from LHCb [6] and B ! Xse+e� from BaBar [57].
As mentioned already in the introduction, the recent measurement of the ratio RK of B !

Kµ+µ� and B ! Ke+e� branching ratios in the q2 bin [1, 6] GeV2 by LHCb [6] shows a 2.6�

18

model-independent framework exists even in the heavy-quark limit, as the bin extends outside the

range of validity of QCD factorization, employed both here and in [38]. Therefore, we restrict

our investigation to the CP -averaged angular observables in the P (0)
i

basis, augmented by the CP

asymmetry PCP

3

, measured in the bin [1, 6] GeV2 [45, 49].

FIG. 5. Graphs for the B ! K⇤`+`� anomaly. Left panel: 68% and 95% CL bounds in the parameter

space of the power corrections a
V± and for a fit in the SM. We use a profile �2 including only the P (0)

i

observables in the bin [1, 6] GeV2. The origin of the axis corresponds to QCDF and the small dashed box

corresponds to the subspace for the LCSR of ref. [78] when the errors of V and A
1

are combined linearly.

Right panel: Profile �2 including only the angular observables in the P (0)
i

basis in the bin [1, 6] GeV2 as a

function of a BSM contribution to C
9

and setting all the other Wilson coefficients to their SM values. The

red and blue shades indicate the limits for the 68% and 95% CL. The dashed green line corresponds to the

case in which V� and V
0

are used to fix the soft form factors. In both cases �2

min

⇠ 1.

On the left-hand side of Fig. 5 we show the contours for the �2 constructed with this angular

data in the SM (all the Wilson coefficients set to their SM values), as a function of the power

corrections to the vector form factors a
V± and where we have profiled over the rest of the QCD

parameters. The �2 receives an important contribution from the measured P 0
5

, which in our plot

is represented by the overlaid diagonal contours obtained setting all the other QCD parameters to

their central values. This is consistent with the conclusions of the different analyses (eg ref. [50]),

and we also agree that the data favours a negative NP contribution to C
9

. However, in our case

the significance is much smaller, about 1� as in our approach the data can be accommodated quite

well by reasonable values of the power corrections. This is shown on the right hand side of Fig. 5

where we plot the ��2 as a function of the contribution of NP to C
9

(�2

min

⇠ 1) and where, (i) we
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Altmannshofer,
Straub

also: Bobeth et al; Hurth-Mahmoudi; Ciuchini et al (in prep); Ghosh et al,...

Descotes-Genon et al

SJ, Martin Camalich
(1 fb-1)



One leptoquark realisation

slides from
M Schmaltz
at LHCb Implications, 05/11/2015



λ=0 and λ=-1 amplitudes involve two nonperturbative form factors 
each, and nonlocal (“quark loop”) contributions.
Implies degeneracies between C9 and nonperturbative 
physics.  (Eg, rescale V-  and C9 by opposite amount.)

Can one explain apparent BSM C9 by either form factor 
uncertainties or underestimated long-distance charm?

no photon pole:
vanishing relative 
contribution as q2->0              

Possible issues

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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qq̄

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

Wednesday, 24 September 14

photon pole at q2=0 
                   
Only one form factor, drops out 
up to interference

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

Wednesday, 24 September 14

HV (�) / Ṽ�(q
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2)C10 � V��(q

2)C 0
10

1

photon pole at q2=0

                     complicated
nonlocal correction

λ=+1/0/-1  helicity of vector meson



Form factor relations
The heavy-quark limit is highly predictive both for form factor ratios 
and for virtual-charm effects, for instance:

- Eliminates form factor dependence from some observables (eg 
P2’ and zero of AFB) almost completely, up to Λ/mb  power corrections

- pure HQ limit: T-(0)/V-(0) ~ 1.05 > 1 

- compare to: T-(0)/V-(0) = 0.94 +/- 0.04 
  LCSR computation with correlated parameter variations.
  Difference consistent with Λ/mb  power correction;
  remarkable 5% error                     

and largely cancel each other. One may wonder whether this is an indication
that higher-order or long-distance e↵ects might be predominantly C7-like,
too.

Once can also study the sensitivity to variations of the Wilson coe�cients
(such as in BSM scenarios):

C̃e↵
7 (q2 = 3GeV2) = �0.388� 0.018i� (0.070 + 0.009i)�C̄2 + �C7,(11)

C̃e↵
9 (q2 = 3GeV2) = 4.41 + 1.93 �C̄1 + (0.37 + 0.03i)�C̄2 + �C9. (12)

Note the (very) large number multiplying �C̄1. C̄1 is the “small”, 1/N -
suppressed tree-level Wilson coe�cient, generated primarily through running
from the weak scale in the SM. This prefactor also grows in magnitude from
1.76 at q2 = 0.1GeV2 to 2.18 at q2 = 6GeV2. This has the potential of
mimicking a negative shift in C9 that grows with q2.

The spectator scattering contribution cannot be split in a similar fashion
(although one could try to see numerically whether a split is possible that
could absorb the bulk of the q2 dependence. Before that, it is important to
see how sizable it is altogether. It includes annihilation, which starts at ↵0

s.
The helicity-+ amplitudes are power-suppressed altogether, but should

be written down (form factor + a power LD power correction).

1.2 Form factors in the heavy-quark expansion

The form factors are not known from first principles (and only defined in a
narrow-width limit, if one insists on a K⇤ mass shell). However, they again
obey relations in the heavy-quark limit, which follow from (BF 2000) as:

T�(q2)
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= 1 +
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ln
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b
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where we can replace A0 by V0 or T0 in the denominator of the spectator
scattering term, and where

L = � 2E

mB � 2E
ln

2E

mB
, (17)
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from the weak scale in the SM. This prefactor also grows in magnitude from
1.76 at q2 = 0.1GeV2 to 2.18 at q2 = 6GeV2. This has the potential of
mimicking a negative shift in C9 that grows with q2.

The spectator scattering contribution cannot be split in a similar fashion
(although one could try to see numerically whether a split is possible that
could absorb the bulk of the q2 dependence. Before that, it is important to
see how sizable it is altogether. It includes annihilation, which starts at ↵0
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The helicity-+ amplitudes are power-suppressed altogether, but should

be written down (form factor + a power LD power correction).

1.2 Form factors in the heavy-quark expansion

The form factors are not known from first principles (and only defined in a
narrow-width limit, if one insists on a K⇤ mass shell). However, they again
obey relations in the heavy-quark limit, which follow from (BF 2000) as:

T�(q2)

V�(q2)
= 1 +

↵s

4⇡
CF

"

ln
m2

b

µ2
� L

#

+
↵s

4⇡
CF

1

2

�F?

V�
, (13)

T0(q2)

V0(q2)
= 1 +

↵s

4⇡
CF

"

ln
m2

b

µ2
+ 2L

#

� ↵s

4⇡
CF

MB

2E

�Fk

A0

, (14)

A0(q2)

V0(q2)
= 1 +

↵s

4⇡
CF [2� 2L]� ↵s

4⇡
CF

MB

2E

✓
1� mB

2E

◆ �Fk

A0

, (15)

T0(q2)

A0(q2)
= 1 +

↵s

4⇡
CF

"

ln
m2

b

µ2
� 2 + 4L

#

� ↵s

4⇡
CF

✓
mB

2E

◆2 �Fk

A0

, (16)

where we can replace A0 by V0 or T0 in the denominator of the spectator
scattering term, and where
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“spectator scattering”: 
mainly dependent on B 
meson LCDA
but as suppressed

“vertex” correction: 
parameter-free

Charles et al 1999
Beneke, Feldmann 2000
Beneke, Feldmann, Seidel 2001-4

Descotes-Genon, Hofer, Matias, Virto

[D Straub, priv comm based on 
Bharucha, Straub, Zwicky 1503.05534]

Beneke,Feldmann 2000



Forward-backward asymmetry

pink: full scan over all theory errors

Surprising that pure HQ limit appears to 
agree reasonably well with data !

LHCb Moriond 2015 (3 fb-1)
downward shift of AFB relative to
LCSR-based prediction

Such a shift is largely equivalent to a
rightward shift of the zero crossing.

Zero crossing in LCSR has been
significantly lower than heavy-quark limit
for many years (as low as <3 GeV2)

blue line: pure heavy-quark limit, no 
power corrections
light blue: “68% Gaussian” theory error
(including power corrections)
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Figure 5: The CP -averaged observables in bins of q2. The shaded boxes show the SM prediction
taken from Ref. [49].
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(Bharucha, Straub, Zwicky 2015)

LHCB-CONF-2015-002

“Clean” observables at present precision have noticeable form factor dependence
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SJ, Martin Camalich, preliminary
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Angular observable P5’

pink: full scan over all theory errors

light blue: “68% Gaussian” theory error
                                              

LHCb 2013 (1 fb-1)

LHCb Moriond 2015 (3 fb-1)

red line: heavy-quark limit, no power 
corrections

(Ignore 6..8 GeV bin, above perturbative charm threshold and very close to resonances.)

For Gaussian errors [corresponding to what most authors employ], there is a noticeable 
deviation in a single bin; but also here less drastic than with LCSR-based theory

SJ, Martin Camalich, preliminary



Charming penguin?

THE NEW SET OF OBSERVABLES -- P & P’ -- DOES 
NOT ADD ANY NEW INFO TO THE FIT RESULT.

What about the optimized observables ?

19

prediction involves Bayesian fit of charm loop to data

by design this can account for any effect depending on prior;
question is whether posterior is consistent with heavy-quark expansion

M Valli at LHCb Implications, 03/11/2015
preliminary



C10 and Bs -> mu mu

exp uncertainty will reach this during HL run

Phenomenological consequences Bq ! ``
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Data: CMS-PAS-BPH-13-007,LHCb-CONF-2013. Theory: Bobeth et al. PRL112(2014)101801

Bq ! `` blind to the orthogonal combinations CS + C0
S and CP + C0

P

Scalar operators unconstrained!
J. Martin Camalich (UCSD) B ! K⇤`+`� July 24, 2014 20 / 23

Theory status before October 2013

NLO QCD corrections [Buchalla,Buras’93’99; Misiak,Urban’99]

leading-mt NLO electroweak corrections [Buchalla,Buras’98]

uncertainty (from higher orders): ≈ 7%

Matthias Steinhauser – Bs → µ
+
µ
− and B̄ → Xsγ to NNLO 5

very NP sensitive (Z 
penguin C10, heavy 
Higgses)

SM helicity 
suppression

Beyond the SM
• New physics can modify the Z

penguin ....

... induce a Higgs penguin ...

... or induce (or comprise) four-fermion
contact interactions directly

• for the most general effective
Hamiltonian,
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could also 
violate lepton 
flavour

(Similar results have recently been obtained from a QCD sum rule analysis [18].)
If the lepton spins are not measured, the branching ratio for the case l = µ takes the

general form

B (B̄q → µ+µ−) =
G2

Fα2M3
Bq

f 2
Bq

τBq

64π3
|VtbV

∗
tq|2

√
1 − 4m̂2

µ

{
(1 − 4m̂2

µ)|FS|2 + |FP + 2m̂µFA|2
}

,

(3.6)

with the notation m̂µ ≡ mµ/MBq and the dimensionless form factors

FS,P = MBq

[
cS,Pmb − c′S,Pmq

mb + mq

]
, FA = c10 − c′10. (3.7)

In the SM, the contributions involving the neutral Higgs boson are completely negligible,
and so B (B̄q → µ+µ−) ∝ m̂2

µ, which is a consequence of helicity suppression.4 Finally,
allowing the input parameters in Eq. (3.6) to vary over the interval in Eq. (3.5), and using
the ranges for the CKM factors given in Ref. [1], the ratio of decay rates of B̄d,s → µ+µ−

within the SM is expected to be in the range

0.02 ! RSM ! 0.05, (3.8)

which is largely due to the imprecisely known CKM elements.

IV. HIGGS-BOSON CONTRIBUTIONS TO THE DECAYS B̄d,s → l+l−

We now turn to the computation of the scalar and pseudoscalar Wilson coefficients in
the b → ql+l− transition arising from gluino and neutralino exchange diagrams within the
general MSSM. As mentioned earlier, we perform our calculation in the large tanβ regime
(i.e. 40 " tan β " 60). For the remaining contributions (W±, H±, χ̃±) to these short-
distance coefficients, we refer to Refs. [2, 5–7].

The relevant box and penguin diagrams are depicted in Fig. 1, where H0, h0, A0 and
G0 are the neutral Higgs and would-be-Goldstone bosons respectively, l̃a are the charged
sleptons, d̃a denote the down-type squarks, χ̃0

k are the neutralinos, and g̃ represents the
gluino. We perform the calculation in the ’t Hooft-Feynman gauge, using the Feynman rules
of Ref. [19], and adopting the on-shell renormalization prescription described in Ref. [2].

In our subsequent calculation, we will exploit the tree-level relations

M2
A0 = M2

H − M2
W , M2

H0 + M2
h0 = M2

A0 + M2
Z , (4.1)

sin 2α

sin 2β
= −

(
M2

H0 + M2
h0

M2
H0 − M2

h0

)
,

cos 2α

cos 2β
= −

(
M2

A0 − M2
Z

M2
H0 − M2

h0

)
, (4.2)

where MA0 and MH are the masses of the CP-odd and charged Higgs boson respectively.
Mh0,H0 and α are the masses and mixing angle in the CP-even Higgs sector. This leaves two
free parameters in the Higgs sector that we choose to be MH and tanβ.

4Because the B meson has spin zero, both µ+ and µ− must have the same helicity.
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[Bobeth, Ewerth, Kruger, Urban 2002] 
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Outline

Bs → µ+µ−
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser’13]

NNLO QCD
NLO EW

B̄ → Xsγ [Misiak et al.]

Matthias Steinhauser – Bs → µ
+
µ
− and B̄ → Xsγ to NNLO 2

B(Bs → µ+µ−): missing O(αem)

B(Bs → µ+µ−) =
|N|2M3

Bs f
2
Bs

8π ΓsH
β r2|CA(µb)|2 + O(αem)

no enhancement factor (like 1
sin2 θW

, m2
t

M2
W

or ln2 M2
W

µ2b
)

soft Bremsstrahlung: Bs → µ+µ− + (nγ) (n = 0, 1, 2, . . .)
Can QED corrections (αem/π ≈ 2× 10−3) remove
helicity suppression factor (m2

µ/M2
Bs ≈ 10−4)?
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Helicity suppression

➪ helicity suppression

➪ helicity suppression

➪ lift helicity suppression

BUT phase-space suppression
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➪ lift helicity suppression

BUT (αem/π)3 ≈ 10−8 " m2
µ/M2

Bs ≈ 10−4

➪ helicity suppression remains

Matthias Steinhauser – Bs → µ
+
µ
− and B̄ → Xsγ to NNLO 9

New prediction

Outline

Bs → µ+µ−
[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser’13]

NNLO QCD
NLO EW

B̄ → Xsγ [Misiak et al.]

Matthias Steinhauser – Bs → µ
+
µ
− and B̄ → Xsγ to NNLO 2

Results: uncertainties

Bsµ = (3.65± 0.06)Rtα Rs × 10−9 = 3.65± 0.23× 10−9

Rs =
(
fBs [MeV]
227.7

)2( |Vcb|
0.0424

)2( |V!
tbVts/Vcb|
0.980

)2 τ sH [ps]
1.615

fBs : [FLAG], Vcb : [Gambino,Schwanda’13], |V!
tb Vts/Vcb|: [CKMfitter,UTfit], τ s

H : [HFAG],

fBs CKM τ sH Mt αs other non-
∑

param. param.

Bs# 4.0% 4.3% 1.3% 1.6% 0.1% < 0.1% 1.5% 6.4%

Matthias Steinhauser – Bs → µ
+
µ
− and B̄ → Xsγ to NNLO 16

[slide based on talk by M Steinhauser, BEACH 2014

parametric uncertainties dominate

Z                     

H                     
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exp uncertainty will reach this during HL run
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Theory status before October 2013

NLO QCD corrections [Buchalla,Buras’93’99; Misiak,Urban’99]

leading-mt NLO electroweak corrections [Buchalla,Buras’98]

uncertainty (from higher orders): ≈ 7%

Matthias Steinhauser – Bs → µ
+
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− and B̄ → Xsγ to NNLO 5

very NP sensitive (Z 
penguin C10, heavy 
Higgses)

SM helicity 
suppression

Beyond the SM
• New physics can modify the Z

penguin ....

... induce a Higgs penguin ...

... or induce (or comprise) four-fermion
contact interactions directly

• for the most general effective
Hamiltonian,
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(Similar results have recently been obtained from a QCD sum rule analysis [18].)
If the lepton spins are not measured, the branching ratio for the case l = µ takes the

general form
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with the notation m̂µ ≡ mµ/MBq and the dimensionless form factors

FS,P = MBq

[
cS,Pmb − c′S,Pmq

mb + mq

]
, FA = c10 − c′10. (3.7)

In the SM, the contributions involving the neutral Higgs boson are completely negligible,
and so B (B̄q → µ+µ−) ∝ m̂2

µ, which is a consequence of helicity suppression.4 Finally,
allowing the input parameters in Eq. (3.6) to vary over the interval in Eq. (3.5), and using
the ranges for the CKM factors given in Ref. [1], the ratio of decay rates of B̄d,s → µ+µ−

within the SM is expected to be in the range
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which is largely due to the imprecisely known CKM elements.

IV. HIGGS-BOSON CONTRIBUTIONS TO THE DECAYS B̄d,s → l+l−

We now turn to the computation of the scalar and pseudoscalar Wilson coefficients in
the b → ql+l− transition arising from gluino and neutralino exchange diagrams within the
general MSSM. As mentioned earlier, we perform our calculation in the large tanβ regime
(i.e. 40 " tan β " 60). For the remaining contributions (W±, H±, χ̃±) to these short-
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G0 are the neutral Higgs and would-be-Goldstone bosons respectively, l̃a are the charged
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k are the neutralinos, and g̃ represents the
gluino. We perform the calculation in the ’t Hooft-Feynman gauge, using the Feynman rules
of Ref. [19], and adopting the on-shell renormalization prescription described in Ref. [2].
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where MA0 and MH are the masses of the CP-odd and charged Higgs boson respectively.
Mh0,H0 and α are the masses and mixing angle in the CP-even Higgs sector. This leaves two
free parameters in the Higgs sector that we choose to be MH and tanβ.

4Because the B meson has spin zero, both µ+ and µ− must have the same helicity.
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Further LUV tests
SM predicts lepton universality to great accuracy. In particular, 
apart from lepton mass effects all helicity amplitudes coincide 
and hence, to our accuracy, the theory error on any LUV ratio 
or difference is zero.

Two particular classes of observables:

(1)

(2) lepton-flavour-dependence of position of zero-crossings    

Altmannshofer, Straub; Hiller, Schmaltz; SJ, Martin Camalich

K⇤ mesons. The balance between these two in the total decay rate is often measured by the

polarization fractions F
L

= 1 � F
T

[45]. Here we prefer to use the integrated “longitudinal” and

“transversal” rates, d�/dq2 F
L,T

, and construct the corresponding lepton-universality ratios:

R
K

⇤
X
=

B(B ! K⇤
X

µ+ µ�
)

B(B ! K⇤
X

e+ e�)
. X = L, T. (32)

Finally, one can define the ratio of the different angular observables that we define as:

R
i

=

h⌃µ

i

i
h⌃e

i

i , (33)

where ⌃

`

i

stands for the given observable with the leptons ` in the notation for the CP averages

of [33] and with the brackets indicating that the angular observables have been integrated over

certain q2 region. In the discussion below, we will use the same labels for the q2-dependent ob-

servables obtained replacing the integrated rates in eqs. (31), (32) and (33) by the corresponding

differential ones.

As it has been concluded in various analyses [56, 57], the LUV signal ought to be produced

by lepton-dependent semileptonic operators Q(0)
9,10

. In the following, we will discuss the lepton-

universality ratios in scenarios assuming that the electronic mode is SM-like and with the NP

affecting only the muonic operators. This is supported by the current (rather unprecise) electronic

data set and it would also fit a possible NP contribution to the B ! K⇤µ+µ� anomaly discussed in

sec. III C [56–58, 60, 62]. Nevertheless, note that these ratios are only sensitive to the differences

of the Wilson coefficients for the two leptons. We will study three scenarios: A in which �Cµ

9

=

�1; B where �Cµ

10

= 1; and C an SU(2)

L

-doublet scenario with �Cµ

9

= ��Cµ

10

= �0.5. As

discussed in [57], these are all allowed by the LUV measurement in B+ ! K+``. In this sense,

a positive and significant NP contribution to C
10

does not seem to be ruled out in some global

analyses especially if it comes in a SU(2)

L

combination with C
9

[54]. In order to study plausible

solutions based on quark right-handed currents, we will also consider, in one particular lepton-

universality ratio, the “primed” scenarios where �Cµ

i

! �Cµ 0
i

.

In Fig. 8 we show a selection of the ratios (32) and (33) plotted in terms of the q2-dependent

differential rates. The first plot, on the left-hand side of the upper panel, shows the effects of the

different NP scenarios on the longitudinal rate. This is analogous to the one in B ! K`+`�, and

therefore a signal equivalent to the one measured in R
K

should be also found in R
K

⇤
L

. On the other

hand, the effect in the ratio of the transversal rate is intrinsically different to the one probed by R
K

.

Indeed, R
K

⇤
T

depends on |H�
V

|2, which includes an interference term, C
9

C
7

/q2, that is negative in
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is no power suppression of h
0

; this should be considered an ad hoc model but
does not impact on the observables emerging as clean in the phenomenological
analysis below, which only involve helicities ±1. We have increased the magni-
tude of these e↵ects beyond the error estimates of [46], such as to accomodate
within it the small long-distance contributions from the chromomagnetic penguin
operators. For the light-quark Hamiltonian, we estimate possible long-distance
corrections by means of the model described in Sect. 3.2.3. Input parameters are
summarized in Appendix A.2.

4 Phenomenology at low q2

4.1 Observables for B̄ ! K̄⇤`+`�

In general, there are twelve q2-dependent observables (shown in [39] neglecting
tensor operators, but this remains true in the their presence) that are accessible
through a full-angular analysis of the B̄ ! K̄⇤`+`� decay rate and which corre-
spond to the angular coe�cients I

i

(q2) in Eq. (38). In the absence of scalar and
tensor operators, which includes the SM, Ic

6

= 0, and there is one relationship
among the remaining coe�cients, reducing the number of independent observ-
ables to ten [45]. If one furthermore assumes m

`

= 0, two more relations can be
established,

3I
1s

= I
2s

, I
1c

= �I
2c

, (78)

leading to eight independent observables.
The analysis of the CP-partner decay B ! K⇤`+`� gives a same amount of

independent observables as in the B̄ decay, the Ī
i

’s. In this sense, it is useful to
define the following combinations of I

i

’s and Ī
i

’s,

⌃
i

=
I
i

+ Ī
i

2
, �

i

=
I
i

� Ī
i

2
, (79)

which can be used to construct a variety of CP-averages and asymmetries [37,39].

4.2 The B̄0 ! K̄⇤0µ+µ� decay

In Fig. 6, we show the SM predictions for the eleven angular coe�cients available
in this case and normalized by the B̄0 decay rate at low q2. The solid (red) and
the dashed (green) lines correspond to the prediction including the light-quark
contributions in the hadronic model or in QCD factorization, respectively (see
Sec. 3). The inner (red) error band is the uncertainty derived from the hadronic
parameters (soft form factors, decay constants,. . .), the CKM parameters and the
renormalization scale. The intermediate (blue) and outer (green) bands result
from the addition in quadratures of the unknown factorizable and charm-loop
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FIG. 8. Lepton-universality ratios for B0 ! K⇤0`` in the SM and in different NP scenarios. The SM is the

solid (red), A the dashed (blue), B the dot-dashed (green) and C the dotted (black) lines. In the right-hand

plot of the lower panel (R
3

) we show, instead, the A0, B0 and C 0 scenarios.

the SM. Therefore, a contribution �C
9

< 0 is expected to reduce the interference, increasing the

transversal rate at low q2. This is what we observe on the right-hand side of upper panel in Fig. 8,

where, in the scenario A, R
K

⇤
T
> 1 for most of the low q2 region and up to the point where the

term |Cµ

9

|2 dominates and makes R
K

⇤
T
< 1. Scenario B involves only a reduction of the quadratic

term |Cµ

10

|2 and therefore it causes an overall reduction of R
K

⇤
T

with respect to 1.

Besides that, the ratios R
i

between different coefficients of the angular observables offer unique

opportunities to investigate LUV. Some of these coefficients, like I
6

(q2) (the one entering A
FB

and

P
2

) and I
5

(q2) (entering P 0
5

) have zeroes at low q2 due to the cancellations between C`

9

and C
7

/q2

at work within H�
V

(see eg [5]). Therefore, a displacement of the zero-crossings between a muonic

angular coefficient and its electronic counterpart would be also an unambiguous signal of LUV, as

all long-distance QCD effects cancel out. Defining:

�

i

0

⌘ (q2
0

)

(µ)

Ii
� (q2

0

)

(e)

Ii
, (34)

an observation of a nonvanishing �

0

i

would provide provide sensitivity to LUV in �C
9? (primarily

28
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What would a signal look like?
SJ, Martin Camalich
1412.3183

Any observed deviation from one (Ri) or zero (     ) would be a clear BSM signal

Different BSM explanations of RK  discriminated
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3 
Kaons strike back

A few words on a new emerging precision observable

... due to fantastic progress in lattice QCD,
which can now compute all relevant long-distance effects that 
used to dominate the theoretical uncertainty

... and we discover a new anomaly



        mixing: long-distance dominance
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first direct (non-local) calculation of charm/up dominated KL- KS mass difference
by RBC-UKQCD 2015 - agrees with SM; still large error; no anomaly

CP violating part is short-distance-dominated:
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for the mixing-induced CP asymmetry S⌅Ks gen-
eralizes to

S⌅Ks = sin(2� + 2⌃d) = 0.681± 0.025 , (1)

where ⌃d is the new phase. The information men-
tioned above points toward a small negative value
of ⌃d. On the other hand, the mixing-induced CP
asymmetry S⌅⇤ is given by [7]

S⌅⇤ = sin(2|�s|� 2⌃s) , (2)

where the SM phases �,�s are defined from the
CKM matrix entries Vtd, Vts through

Vtd = |Vtd|e�i� , Vts = �|Vts|e�i�s , (3)

with �s ⌅ �1⇥. From eq. (2) one finds that a
negative ⌃s is also required to explain the claim of
[2]. It is then tempting to investigate whether, at
least to first approximation, the same new phase
⌃d ⌅ ⌃s ⌅ ⌃B could fit in both Bd and Bs systems,
being a small correction in the former case – where
the SM phase is large – and the bulk of the e⇥ect
in the latter.2

The rest of this paper is an attempt to explore
the above possibilities in more detail. For the sake
of clarity, we introduce here some notation details.
The amplitudes for Bq (q = d, s) meson mixings
are parameterized as follows

�Bq|Hfull
�F=2|Bq ⇤ Afull

q e2i�full
q , (4)

where, to make contact with the conventions on
the SM phases �,�s, one has

�full
d = � + ⌃d ,

�full
s = �s + ⌃s . (5)

The magnitudes Afull
q can be written as

Afull
q = ASM

q Cq ,

with ASM
q ⇤ |�Bq|HSM

�F=2|Bq | = �MSM
q /2 . (6)

Concerning Cq, with present theoretical errors on
the Bq system mass di⇥erences �Mq, it is im-
possible to draw conclusions on the presence of
NP. Therefore, one typically considers the ratio
�Md/�Ms, where the theoretical error is smaller,
and is dominated by the uncertainty in the lattice
parameter ⌅s, defined as

⌅s ⇤ FBs

⇤
B̂s

FBd

⇤
B̂d

. (7)

2 This simple correlation is unrelated to more involved cor-
relations that invoked �F = 1 transitions, as in [15] and
references therein.

The resulting SM prediction for �Md/�Ms is in
good agreement with the experimentally measured
ratio3. Hence it is plausible, at least to first ap-
proximation, to assume �Md/�Ms as una⇥ected
by NP, i.e., recalling eq. (6), that

Cd = Cs = CB . (8)

We will comment on this assumption later on in
the analysis.

2. ⇥K and sin 2�

We start our discussion by looking more closely
at the ⇥K parameter. For the latter, we use the
following theoretical formula [16]

⇥K = ei⇤✏ sin ⌃⇥

�
Im(MK

12)
�MK

+ ⌅

⇥
,

⌅ =
ImA0

ReA0
, (9)

with A0 the 0-isospin amplitude in K ⇧ ⇧⇧ de-
cays, MK

12 = �K|Hfull
�F=2|K and �MK the K �K

system mass di⇥erence. The phase ⌃⇥ is measured
to be [17]

⌃⇥ = (43.51± 0.05)⇥ . (10)

Formula (9) can for instance be derived from any
general discussion of the K �K system formalism,
like [18, 19], and can be shown to be equivalent
to eq. (1.171) of [20], where all the residual un-
certainties are explicitly indicated and found to
be well below 1%. In contrast with the ⇥K for-
mula used in basically all phenomenological appli-
cations, eq. (9) takes into account ⌃⇥ ⌃= ⇧/4 and
⌅ ⌃= 0. Specifically, the second term in the paren-
thesis of eq. (9) constitutes an O(5%) correction to
⇥K and in view of other uncertainties was neglected
until now in the standard analyses of the UT, with
the notable exception of [21, 22]. Most interest-
ingly for the discussion to follow, both ⌅ ⌃= 0 and
⌃⇥ < ⇧/4 imply suppression e⇥ects in ⇥K relative
to the approximate formula. In order to make the
impact of these two corrections transparent, we
will parameterize them through an overall factor
⇤⇥ in ⇥K :

⇤⇥ =
↵

2 sin⌃⇥⇤⇥ , (11)

with ⇤⇥ parameterizing the e⇥ect of ⌅ ⌃= 0. The
calculation by Nierste in [20] (page 58), the anal-
yses in [21, 22] and our very rough estimate at

3 Variations of the SM formula due to di⇥erent CKM in-
put are much smaller than the relative theoretical error,
which is roughly 2���s .

3

the end of the paper show that ⌅� . 0.96, with
0.94± 0.02 being a plausible figure. Consequently
we find

⌅� = 0.92 ± 0.02 . (12)

In view of the improvements in the input param-
eters entering ⇥K , the correction (12) may start
having a non-negligible impact in UT analyses.
Therefore, a better evaluation of this factor would
certainly be welcome.

One can now identify the main parametric de-
pendencies of ⇥K within the SM through the for-
mula

|⇥SM
K | = ⌅�C�B̂K |Vcb|2⇧2⇤ ⇥�
|Vcb|2(1� �)⇤ttS0(xt) + ⇤ctS0(xc, xt)� ⇤ccxc

⇥
,

with C� =
G2

F F 2
KmK0M2

W

6
⌦

2⌥2�MK

, (13)

and where notation largely follows ref. [18], in par-
ticular xi = m2

i (mi)/M2
W , i = c, t. As far as CKM

parameters are concerned, eq. (13) reproduces the
‘exact’ SM result, where no expansion in ⇧ is per-
formed, to 0.5% accuracy. Now, 1 � � = Rt cos�
and ⇤ = Rt sin�, where the UT side Rt is given
by

Rt ⌅
1
⇧

|Vtd|
|Vts|

=
⌃s
⇧

⌅
MBs

MBd

⇤
�Md

�Ms

⇤
Cs

Cd
. (14)

with Cd = Cs assumed here (see eq. (8)) and ⌃s
introduced in eq. (7). Therefore, for the leading
contribution to ⇥K , due to top exchange, one can
write

|⇥K | ⇧ ⌅�F
2
KB̂K |Vcb|4⌃2s

Cs

Cd
sin 2� , (15)

showing that the prediction for ⇥K is very sensitive
to the value of |Vcb| but also to ⌃s and FK . All the
input needed in eqs. (13)-(15) and in the rest of
our paper is reported in table I.

3. Three new-physics scenarios

Next we note that the most updated values for
all the parameters on the r.h.s. of eq. (15), with
exception of sin 2�, are lower with respect to pre-
vious determinations. Notably, the central value
of the most recent estimate of B̂K [9] is lower by
roughly 9%, with a similar e⇥ect due to the ⌅�

factor (see eq. (12)). One can then investigate
whether the value of sin 2� required to accommo-
date |⇥K | within the SM may be too high with re-
spect to the sin 2� determination from Bd physics,

GF = 1.16637 · 10�5 GeV�2 ⇧ = 0.2255(7) [23]
MW = 80.403(29) GeV |Vcb| = 41.2(1.1) · 10�3 [24]

MZ = 91.1876(21) GeV ⇤cc = 1.43(23) [25]
�s(MZ) = 0.1176(20) ⇤ct = 0.47(4) [25]
mc(mc) = 1.25(9) GeV ⇤tt = 0.5765(65) [26]
Mt = 172.6(1.4) GeVa [28] FK = 0.1561(8) GeV [23]

MBd
= 5.2795(5) GeV MK0 = 0.49765 GeV

MBs = 5.3661(6) GeV �MK = 0.5292(9) · 10�2/ps
�Md = 0.507(5)/ps |⇥K | = 2.232(7) · 10�3

�Ms = 17.77(12)/ps [29] ⌅� = 0.92(2)
⌃s = 1.21(6) [30–33] ⌥� = 43.51(5)�

aThe MS mass value mt(mt) = 162.7(1.3) is derived using
[27].

TABLE I: Input parameters. Quantities lacking a ref-
erence are taken from [17].

as already investigated in [5] for ⌅� = 1. Here
we would like to emphasize that, more generally,
this could entail the presence of a new phase either
dominantly in the Bd system or respectively in the
K system, or, alternatively, of two smaller phases
in both systems, defining in turn three NP scenar-
ios. Addressing the significance of either scenario
crucially depends on the errors associated with the
theoretical input entering the ⇥SM

K formula. We
will come back to this point quantitatively in the
discussion to follow, where all the present uncer-
tainties are taken into account.

However, since these uncertainties in the input
do not yet allow clear-cut conclusions, we would
like to first illustrate the three just mentioned NP
scenarios by setting all input parameters except
B̂K at their central values. This would correspond
to the hypothetical situation in which all the input,
including the CKM parameters, were controlled
with higher accuracy than B̂K , for which we as-
sume a 3% uncertainty. In fig. 1 (left panel)
we then show |⇥SM

K | as a function of sin 2� for
B̂K ⌃ {0.65, 0.70, 0.75, 0.80} ± 3%. The verti-
cal ranges centered at sin 2� ⌃ {0.681, 0.75, 0.88},
with a relative error chosen at 3.7% as in the
sin 2�⇤Ks case, define the scenarios in question.
The horizontal range, representing the experimen-
tal result for ⇥K , shows that sin 2� ⌅ sin 2�⇤Ks

would require NP in ⇥K in order to fit the data,
unless B̂K & 0.85. Conversely, in the last sce-
nario, as considered in [5], no NP is required to
fit the data on ⇥K , even for B̂K ⌅ 0.65. In this
case, however, the discrepancy with respect to the
sin 2�⇤Ks determination reveals the need for a NP
phase in the Bd system around �9�. In table II
we report indicative values for various quantities
of interest obtained from the scenarios shown in
fig. 1 (left panel). In particular, values for |⇥SM

K |
are shown for B̂K = {0.7, 0.8}. In giving the result
for S⇤⇥ we set  d =  s (see discussion below). We
observe that values of B̂K in the ballpark of 0.7
would imply a NP correction to |⇥SM

K | exceeding
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〈K̄| |K〉B̂K ∝

3

the end of the paper show that ⌅� . 0.96, with
0.94± 0.02 being a plausible figure. Consequently
we find

⌅� = 0.92 ± 0.02 . (12)

In view of the improvements in the input param-
eters entering ⇥K , the correction (12) may start
having a non-negligible impact in UT analyses.
Therefore, a better evaluation of this factor would
certainly be welcome.

One can now identify the main parametric de-
pendencies of ⇥K within the SM through the for-
mula

|⇥SM
K | = ⌅�C�B̂K |Vcb|2⇧2⇤ ⇥�
|Vcb|2(1� �)⇤ttS0(xt) + ⇤ctS0(xc, xt)� ⇤ccxc

⇥
,

with C� =
G2

F F 2
KmK0M2

W

6
⌦

2⌥2�MK

, (13)

and where notation largely follows ref. [18], in par-
ticular xi = m2

i (mi)/M2
W , i = c, t. As far as CKM

parameters are concerned, eq. (13) reproduces the
‘exact’ SM result, where no expansion in ⇧ is per-
formed, to 0.5% accuracy. Now, 1 � � = Rt cos�
and ⇤ = Rt sin�, where the UT side Rt is given
by

Rt ⌅
1
⇧

|Vtd|
|Vts|

=
⌃s
⇧

⌅
MBs

MBd

⇤
�Md

�Ms

⇤
Cs

Cd
. (14)

with Cd = Cs assumed here (see eq. (8)) and ⌃s
introduced in eq. (7). Therefore, for the leading
contribution to ⇥K , due to top exchange, one can
write

|⇥K | ⇧ ⌅�F
2
KB̂K |Vcb|4⌃2s

Cs

Cd
sin 2� , (15)

showing that the prediction for ⇥K is very sensitive
to the value of |Vcb| but also to ⌃s and FK . All the
input needed in eqs. (13)-(15) and in the rest of
our paper is reported in table I.

3. Three new-physics scenarios

Next we note that the most updated values for
all the parameters on the r.h.s. of eq. (15), with
exception of sin 2�, are lower with respect to pre-
vious determinations. Notably, the central value
of the most recent estimate of B̂K [9] is lower by
roughly 9%, with a similar e⇥ect due to the ⌅�

factor (see eq. (12)). One can then investigate
whether the value of sin 2� required to accommo-
date |⇥K | within the SM may be too high with re-
spect to the sin 2� determination from Bd physics,

GF = 1.16637 · 10�5 GeV�2 ⇧ = 0.2255(7) [23]
MW = 80.403(29) GeV |Vcb| = 41.2(1.1) · 10�3 [24]

MZ = 91.1876(21) GeV ⇤cc = 1.43(23) [25]
�s(MZ) = 0.1176(20) ⇤ct = 0.47(4) [25]
mc(mc) = 1.25(9) GeV ⇤tt = 0.5765(65) [26]
Mt = 172.6(1.4) GeVa [28] FK = 0.1561(8) GeV [23]

MBd
= 5.2795(5) GeV MK0 = 0.49765 GeV

MBs = 5.3661(6) GeV �MK = 0.5292(9) · 10�2/ps
�Md = 0.507(5)/ps |⇥K | = 2.232(7) · 10�3

�Ms = 17.77(12)/ps [29] ⌅� = 0.92(2)
⌃s = 1.21(6) [30–33] ⌥� = 43.51(5)�

aThe MS mass value mt(mt) = 162.7(1.3) is derived using
[27].

TABLE I: Input parameters. Quantities lacking a ref-
erence are taken from [17].

as already investigated in [5] for ⌅� = 1. Here
we would like to emphasize that, more generally,
this could entail the presence of a new phase either
dominantly in the Bd system or respectively in the
K system, or, alternatively, of two smaller phases
in both systems, defining in turn three NP scenar-
ios. Addressing the significance of either scenario
crucially depends on the errors associated with the
theoretical input entering the ⇥SM

K formula. We
will come back to this point quantitatively in the
discussion to follow, where all the present uncer-
tainties are taken into account.

However, since these uncertainties in the input
do not yet allow clear-cut conclusions, we would
like to first illustrate the three just mentioned NP
scenarios by setting all input parameters except
B̂K at their central values. This would correspond
to the hypothetical situation in which all the input,
including the CKM parameters, were controlled
with higher accuracy than B̂K , for which we as-
sume a 3% uncertainty. In fig. 1 (left panel)
we then show |⇥SM

K | as a function of sin 2� for
B̂K ⌃ {0.65, 0.70, 0.75, 0.80} ± 3%. The verti-
cal ranges centered at sin 2� ⌃ {0.681, 0.75, 0.88},
with a relative error chosen at 3.7% as in the
sin 2�⇤Ks case, define the scenarios in question.
The horizontal range, representing the experimen-
tal result for ⇥K , shows that sin 2� ⌅ sin 2�⇤Ks

would require NP in ⇥K in order to fit the data,
unless B̂K & 0.85. Conversely, in the last sce-
nario, as considered in [5], no NP is required to
fit the data on ⇥K , even for B̂K ⌅ 0.65. In this
case, however, the discrepancy with respect to the
sin 2�⇤Ks determination reveals the need for a NP
phase in the Bd system around �9�. In table II
we report indicative values for various quantities
of interest obtained from the scenarios shown in
fig. 1 (left panel). In particular, values for |⇥SM

K |
are shown for B̂K = {0.7, 0.8}. In giving the result
for S⇤⇥ we set  d =  s (see discussion below). We
observe that values of B̂K in the ballpark of 0.7
would imply a NP correction to |⇥SM

K | exceeding
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No significant tension at present 
(NNLO calculation of short distance)

K
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Direct CP violation in KL->pi pi
Precisely known from experiment for a decade (could 
potentially be measured even more precisely at NA62)

Theory calculation highly complex:
  - weak, bottom, charm scale (at least) to NLO perturbation 
theory for comparable precision

  - until recently, sizable parametric uncertainties (CKM, top 
mass, strange mass)

  - until very recently, only crude estimates of nonperturbative 
hadronic matrix elements (scales mK, ΛQCD). Many conceptual 
issues for a lattice-QCD implementation

2015: Two pioneering results by RBC-UKQCD collaboration
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the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
(1/2)
8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

.

average of NA48 
and KTeV

RBC-UKQCD, PRD91 (2015) 7,074502  
arXiv:1505.07863   

(many contributors)



 master fomula

minimize number of independent, relevant matrix elements
two matrix elements remain: <Q6>0 (in Im A0), <Q8>2 (in Im A2)

2 Basic formulae 6

Electroweak Penguins:

Q
7

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V+A Q
8

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V+A (13)

Q
9

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V�A Q
10

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V�A (14)

Here, ↵, � denote colour indices and eq denotes the electric quark charges reflecting the
electroweak origin of Q

7

, . . . , Q
10

. Finally, (s̄d)V�A ⌘ s̄↵�µ(1� �
5

)d↵.
The Wilson coe�cients zi and yi have been calculated at the NLO level more than

twenty years ago [10,11], and some pieces of NNLO corrections are also available [12–14].
In Table 1, we collect values for z

1,2 and yi at µ = mc, used in our approach, for three
values of ↵s(MZ) and mt = 163GeV, in the NDR-MS scheme.

↵s(MZ) = 0.1179 ↵s(MZ) = 0.1185 ↵s(MZ) = 0.1191
z
1

–0.4036 –0.4092 –0.4150
z
2

1.2084 1.2120 1.2157
y
3

0.0275 0.0280 0.0285
y
4

–0.0555 –0.0563 –0.0571
y
5

0.0054 0.0052 0.0050
y
6

–0.0849 –0.0867 –0.0887
y
7

/↵ –0.0404 –0.0403 –0.0402
y
8

/↵ 0.1207 0.1234 0.1261
y
9

/↵ –1.3936 –1.3981 –1.4027
y
10

/↵ 0.4997 0.5071 0.5146

Table 1: �S = 1 Wilson coe�cients at µ = mc = 1.3GeV for three values of ↵s(MZ) and
mt = 163GeV in the NDR-MS scheme.

2.2 Basic formula for "0/"

Our starting expression is formula (8.16) of [29] which we recall here in our notation1

"0

"
= � !

+p
2 |"K |


ImA

0

ReA
0

(1� ⌦
e↵

)� ImA
2

ReA
2

�
, (15)

where [29]

!
+

= a
ReA

2

ReA
0

= (4.53± 0.02)⇥ 10�2, a = 1.017, ⌦
e↵

= (6.0± 7.7)⇥ 10�2 . (16)

Here a and ⌦
e↵

summarise isospin breaking corrections and include strong isospin violation
(mu 6= md), the correction to the isospin limit coming from �I = 5/2 transitions and

1In order to simplify the notation we denote Re("0/") simply by "0/", which is real to an excellent
approximation. The latter is a model-independent consequence of the experimentally known values of
the (strong) phases of "0 and ".

from experiment
QCD isospin amplitudes
calculate in terms of weak Hamiltonian
perturbative NLO Wilson oefficients
& numerous nonperturbative hadronic matrix elements

Cirigliano et al 2003
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Electroweak Penguins:

Q
7

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V+A Q
8

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V+A (13)

Q
9

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V�A Q
10

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V�A (14)

Here, ↵, � denote colour indices and eq denotes the electric quark charges reflecting the
electroweak origin of Q

7

, . . . , Q
10

. Finally, (s̄d)V�A ⌘ s̄↵�µ(1� �
5

)d↵.
The Wilson coe�cients zi and yi have been calculated at the NLO level more than

twenty years ago [10,11], and some pieces of NNLO corrections are also available [12–14].
In Table 1, we collect values for z

1,2 and yi at µ = mc, used in our approach, for three
values of ↵s(MZ) and mt = 163GeV, in the NDR-MS scheme.
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= (6.0± 7.7)⇥ 10�2 . (16)

Here a and ⌦
e↵

summarise isospin breaking corrections and include strong isospin violation
(mu 6= md), the correction to the isospin limit coming from �I = 5/2 transitions and

1In order to simplify the notation we denote Re("0/") simply by "0/", which is real to an excellent
approximation. The latter is a model-independent consequence of the experimentally known values of
the (strong) phases of "0 and ".

from experiment

Buras, Buchalla, ... 1990; Buras, Jamin 1993;1996; Bosch et al 1999;
Buras, Gorbahn, SJ, Jamin  arXiv:1507.06345

leading isospin breaking
Cirigliano et al 2003

Buras et al 1990; Buras, Gorbahn, SJ, Jamin  arXiv:1507.06345
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2.4 Convenient formula for "0/"

Before turning to quantitative phenomenology, in order to make easier connection
with the phenomenological literature and aid discussion of our results, we summarise
the discussion so far in a concise formula (derived first in [10]) for "0/" that exhibits

the sensitivity to the two most important hadronic matrix elements B
(1/2)
6

and B
(3/2)
8

transparently.
Using the e↵ective Hamiltonian (9) and the experimental data for !, ReA

0

and "K ,
we find

"0

"
= Im�

t

·
h
a
�
1� ⌦̂

e↵

�
P (1/2) � P (3/2)

i
, (50)

where

P (1/2) =
X

P
(1/2)
i = r

X
yihQii0 , (51)

P (3/2) =
X

P
(3/2)
i =

r

!

X
yihQii2 , (52)

with

r =
GF !

2 |"K |ReA0

. (53)

In (51) and (52) the sums run over all contributing operators. Therefore in P (1/2) in the
case of EWP contributions we have to take into account the correction b 6= 1 defined in
(18).

Writing then

P (1/2) = a
(1/2)
0

+ a
(1/2)
6

B
(1/2)
6

, (54)

P (3/2) = a
(3/2)
0

+ a
(3/2)
8

B
(3/2)
8

, (55)

with the parameters B(1/2)
6

and B
(3/2)
8

taken at µ = mc and using the expressions (36)-(42)
we find:

a
(1/2)
0

= r
1


[4y

4

� b(3y
9

� y
10

)]

2(1 + q)z�
+ b

3q(y
9

+ y
10

)

2(1 + q)z
+

�
+ r

2

b y
8

hQ
8

i
0

ReA
0

, (56)

a
(1/2)
6

= r
2

y
6

hQ
6

i
0

B
(1/2)
6

ReA
0

, (57)

a
(3/2)
0

= r
1

3(y
9

+ y
10

)

2z
+

, (58)

a
(3/2)
8

= r
2

ye↵
8

hQ
8

i
2

B
(3/2)
8

ReA
2

, (59)

where

r
1

=
!p
2|"K |

1

VudV ⇤
us

, r
2

=
!

2|"K |
GF , (60)

neglect small
imaginary part
(for simplicity;
could easily be
restored)



 Recent progress
2015: First full computation of physical hadronic matrix 
elements (10 for Im A0 and 6 for Im A2) by RBC-UKQCD

removes <Q8>2 as relevant item of error budget (next slide)

<Q6>0: large uncertainty, but quantified error

Moreover:

- substantial improvement in parametric uncertainties (CKM, 
mt mainly) over last decade removes these once important 
sources of uncertainty

However:

- While Re A0 and Re A2  known from data, better use this only  
in V-A x V+A part of (Im AI/Re AI), as matrix element cancell-
ations in V-AxV-A part of ratio (missed by RBC-UKQCD)

RBC-UKQCD, PRD91 (2015) 7,074502  (I=2)

RBC-UKQCD, arXiv:1505.07863   (I=0)

Buras et al 1990; Buras, Gorbahn, SJ, Jamin  arXiv:1507.06345



Result
• combining all errors in quadrature:

• 2.9 sigma discrepancy

• new physics or underestimated error?

• note that the central values differ by an order of 
magnitude. Reducing the theory error could potentially 
increase the significance greatly.

3 Prediction for "0/" in the SM 14

the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
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8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

.
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and Q
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to P (3/2) is represented by the second term in (55). This contribution is dominated
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The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
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We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
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we obtain:
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responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B
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6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂
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than the error due to B

(1/2)
6

.

average of NA48 
and KTeV

Buras, Gorbahn, SJ, Jamin, arXiv:1507.06345



Error budget

• completely dominated by           : excellent lattice prospects!

• next is NNLO: perturbation theory at the charm scale? Can 
reformulate theory for dynamical charm (including lattice)

• isospin breaking: current treatment relies on chiral perturbation 
theory and 1/N counting. More complete treatment seems 
possible on the lattice.
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the precision on mt increased by much in the last two decades. a
(3/2)
0
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A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6
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significant yet small if compared to the deviation from the experimental value. All other
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6
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At this stage it is important to emphasise that the results for B
(3/2)
8

and B
(1/2)
6

in
(2) and (3) receive strong support from the large-N approach as recently demonstrated
in [24]. In particular the smallness of the matrix element hQ

6

i
0

with respect to hQ
8

i
2

is
the result of the chiral suppression of hQ

6

i
0

, signalled by FK �F⇡ in (41). As seen in (42)
no such suppression is present in hQ

8

i
2

. But in addition it is possible to demonstrate that

both B
(1/2)
6

and B
(3/2)
8

are below unity as given in (4). Moreover, while B(3/2)
8

= 0.8± 0.1

is found in this approach, the values of B(1/2)
6

are in the ballpark of the lattice result

and consequently give a strong support for B
(1/2)
6

< B
(3/2)
8

as indicated by the lattice
data. But as present calculations by lattice QCD and in [24] are not precise enough, at

this moment, we cannot exclude that B
(1/2)
6

could be as large as B
(3/2)
8

and this leads
conservatively to the bound in (4).

For these reasons it is instructive to consider other values of the parameters B(1/2)
6

and

B
(3/2)
8

than those obtained by RBC-UKQCD collaboration which are, however, consistent

with the large-N bound in (4). Of particular interest is the choice B
(1/2)
6

= B
(3/2)
8

= 1
which corresponds to the saturation of this bound and the choice in which the bound on
B

(1/2)
6

is saturated when B
(3/2)
8

is fixed to the central lattice value in (2). Using the same
input for the remaining parameters, we find

("0/")
SM

= (8.6± 3.2)⇥ 10�4, (B(1/2)
6

= B
(3/2)
8

= 1), (62)

("0/")
SM

= (6.0± 2.4)⇥ 10�4, (B(1/2)
6

= B
(3/2)
8

= 0.76). (63)

We observe that even for these values of B(1/2)
6

and B
(3/2)
8

the SM predictions for "0/"
are significantly below the data. This is an important result as it shows that even if the
value of B(1/2)

6

from lattice calculations would move up in the future, the SM would face
di�culty in reproducing the data provided the large-N bound in (4) is respected.

With these results at hand, we are in the position to summarise the present picture
of the estimate of "0/" in the SM:

• First, parametric uncertainties decreased by much since the analyses of "0/" around
the year 2000. This includes the uncertainty in Im�t which is presently about ± 7%
and is irrelevant in the estimate in (61) but plays some role when "0/" is larger.
Also the improvement on ms should be appreciated. For example the uncertainty
on the strange quark mass in 2000 would have implied an error contribution in (61)
of about 3⇥ 10�4.

• Second, the previously sizeable uncertainty due to B
(3/2)
8

has become sub-dominant,
much smaller for example than the one due to isospin violation. This is thanks to
impressive progress on the lattice [23], which confirms large-N estimates employed
in our previous papers, but with far smaller uncertainty.

• Third, the present analysis further increased the e↵ectiveness of our framework,
leading to a situation in which a single parameter B(1/2)

6

is playing the decisive role
in the answer to the question whether "0/" in the SM can be reconciled with the data

or not. The new finding both by the lattice QCD and large-N approach that B(1/2)
6

is below unity narrowed significantly the range for "0/" in the SM in our framework.

RBC-UKQCD
2015



Vub    inclusive/exclusive tension

Vcb    inclusive/exclusive tension

B -> D(*) tau nu (another credible ~4 sigma anomaly)

hadronic B decays (eg penguin puzzle)

nor Higgs flavour physics (H -> tau mu)

charm physics

KL -> pi0  nu nu, K+ -> pi+ nu nu  (experimental progress; also 
some relevant lattice progress)

Did not talk about



After run I of LHCb, there is a manifold of “world’s first” 
results.

Discussed several interesting anomalies.

Consistent UV pictures exist. At the moment, the significance 
of some effects is still under debate.

Prospect of lepton universality violation: RK etc. Theoretically 
extremely clean.

Several new emerging precision Kaon observables, including 
direct CP violation in KL -> pi pi decays: at present, ~3 sigma 
anomaly with excellent prospects

Conclusions



BACKUP



 final state             strong dynamics       #obs    NP enters through    

Leptonic
              

semileptonic,
radiative

charmless hadronic

Crucial theory input provided by lattice QCD.

Heavy-quark expansions/QCD factorisation, light-cone sum rules

Intense theory-experiment interaction in recent years

O(1)                         

O(10)                         

O(100)                         

decay constant                     

mainly form factors

matrix element              

B➔l+ l-

B➔ K*l+ l-, K*γ

B➔ππ, πK, ϕϕ, ...

⟨π|jµ|B⟩ ∝ fBπ(q2)

⟨0|jµ|B⟩ ∝ fB

⟨ππ|Qi|B⟩

Rare decays at the LHC
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Crucial theory input provided by lattice QCD.

Heavy-quark expansions/QCD factorisation, light-cone sum rules

Intense theory-experiment interaction in recent years
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⟨ππ|Qi|B⟩

Rare decays at the LHC
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