

BSM SEARCHES @ CMS

Henning Flaecher H.H. Wills Physics Laboratory University of Bristol

UK HEP Forum - Anomalies & Deviations

5th November 2015

* Averyiew - Run 1 legacy *Higgs discovery!

- * Many, many BSM searches, all with null result
 - * di-jet, di-boson resonances, excited vector bosons, leptoquarks, supersymmetry, etc. etc.

* We're still stuck with our "usual" SM insufficiencies * hierarchy problem * unification of forces * dark matter

* A few (interesting?) small deviations in Run1

* Motivation enough to keep searching! * prospects for resonances, SUSY & Dark Matter

*Status of SUSY searches with & TeX

*CMS carried out a comprehensive search for Supersymmetry

- * from model independent inclusive searches to specific decay modes, covering a large number of signatures and final states
- * EWKino production, 3rd generation squarks, gluinos and heavy squarks

*Some bints in Ryp 1?

* Ribsson production: WW->2l2x

- * ATLAS/CMS 7 TeV & ATLAS 8 TeV
 - * => excess over NLO prediction
- * CMS 8 TeV, 5.3 fb⁻¹
 - * $\sigma_{WW} = 69.9 \pm 2.8_{stat} \pm 5.6_{syst} \pm 3.1_{lum} pb$
- * Changes/Improvements:
 - * larger dataset
 - * included events with one jet
 - * most recent improved theoretical description of the signal production, including modeling of the lower region of the p_T spectrum of the W⁺W⁻ system using a resummation technique
 - * Higgs boson effects removed from final result to be consistent with this recent theoretical calculation (8% effect).
- * CMS 8 TeV full dataset 19.4 fb⁻¹
 - * good agreement with theory

total σ [pb] 8TeV	theory
CMS: 60.1 ± 0.9 (stat) ± 3.2 (exp) ± 3.1(th) ± 1.6 (lumi)	59.8 ^{+1.3} -1.1 (NNLO)
Atlas: 71.4 ^{+1.2} $_{-1.2}$ (stat) $^{+5.0}$ $_{-4.4}$ (syst) $^{+2.2}$ $_{-2.1}$ (lumi)	58.7 ^{+3.0} _{-2.7} (qq NLO, gg LO) H->WW included

Speculative interpretation: light stops in near-degenerate mass scenario?

*Electron excesses (I)

EXO-12-041

* First generation leptoquarks in eejj and evjj final states

- * optimized cuts for individual LQ mass hypothesis on M(lv), M(ll), S_T and MET to suppress backgrounds
- * broad excess in both channels for 650 GeV LQ mass hypothesis
- * 2.4 (2.6) sigma in eejj (evjj) channel

* not peaking in ej mass

*Electron excesses (II) EXO-13-008

*W' and heavy neutrino

- * Interestingly a search motivated by W' decays through heavy neutrinos also exhibited an excess in same eejj final state
- * search looks for a bump in the eejj invariant mass
 - * ttbar BG estimated using eµ *j j* control sample
 - * DY BG from $Z/\gamma^* \rightarrow ll$ control sample
- * there is little overlap in events between this and the LQ analysis

2.8 sigma significance for W_R boson candidate with mass 2.1 TeV

Cross-section exclusion, assuming only electron flavor heavy neutrino accessible at LHC energies, as a function of the mass of the W_R for $M(N) = 1/2 M(W_R)$ 5th November 2015

8

*Kinematic edge in opposite sign, same flavour dilepton events

Generic search for kinematic endpoint in dilepton mass spectrum, e.g., * $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \chi_1^0 l^+ l^-$ (produces triangular shape with endpoint) * three body decays of $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l^+ l^-$ (produces an "edge")

SUS-12-019

* Background estimation with opposite sign, opposite flavour leptons
 * Two search regions: central |η| < 1.4, forward 1.6 < |η| < 2.4

*Hadronic searches for stop -> top χ^0

- * In hadronic final states observed limits are weaker than expected across different analyses
 - *e.g. SUS-12-028, SUS-13-019, SUS-14-001
- *not observed in final states with leptons -SUS-13-011

*Prospects for 2015 & 13 TeX

- * Good prospects for SUSY from energy increase from 8->13 TeV
- * much larger than just ratio of CM energies
- * up to factor ~50 for pair production of 1.5 TeV gluinos
- * factor 6 for stop pairs of 500 GeV
- * Not only good for SUSY but also other heavy objects such as Z' etc.

*Consequences for SUSY production

*Example of extended reach di-jet resonance search

*Example of extended reach di-jet resonance search

3.3 Lumi section: 347 2.9 Dijet Mass : 5.4 TeV 2.3 2.0

UK HEP Forum - Anomalies & Deviations

qā

gg

2.7

Axigluon (A)/Coloron (C)

Color Octet Scalar (s8)

*Outlook on 13 TeV sensitivity -Natural SUSY searches

Discovery scenarios with full-spectrum models

CMS PAS SUS-14-012

The nature of the EWKino sector has a large influence on the decays of the top squark.

	NM1	NM2	NM3
$B(\tilde{t} \to t \tilde{\chi}_1^0)$	0.6%	1.5%	39%

- Studied 5 full-spectrum SUSY models.
- 9 analyses performed in parallel.
 - m_H = 125 GeV
- NM 1,2,3 ="Natural" Model 1, 2, 3 m(g̃)=1.7 TeV, m(t̃)=1.1

TeV

- **STC** -Stau co-annihilation. $m(\tilde{\tau}_1) \approx m(\tilde{\chi}_1^0) \approx 190 \text{ GeV}$
- **STOC**-Stop co-annihilation $m(\tilde{t}_1) \approx m(\tilde{\chi}_1^0) \approx 400 \text{ GeV}$

21

* Discovery sensitivity for SUSY benchmark models * CMS-TDR-15-02

* 3 natural pMSSM models all with discoverable 1.7 TeV gluino, differing mainly in masses of sleptons and masses/compositions of neutralinos and charginos (details in backup)

3 lepton + bjet search

Inclusive search in all hadronic final state

Stop pair production in single lepton final state

All curves rising steeply - signs would come early, within first 200/fb

*Projections for 300/fb @ 14 TeX

 * Searches will cover the interesting region of stop masses up to 1 TeV with 300/fb @ 13 TeV
 * Neutralino masses up to 500 GeV

* In gluino mediated models, reach up to m_{gl} of 2 TeV

*Prospects for Park Matter

*Monolepton channel

*Dark matter is one of the hot topics for Run2!

UK HEP Forum - Anomalies & Deviations

5th November 2015

* Monojet projections for AV DM scenario

Based on arXiV:1409.4075

Limits from 8 TeV CMS monojet search (EXO-12-048) and projected limits for 3 LHC scenarios: m_{DM} [GeV]

- 13 TeV 30 fb⁻¹
- 14 TeV, 300 fb⁻¹
- 14 TeV, 3000 fb⁻¹

LUX 2013 limits and projected limits for LZ assuming 10 tonne-year exposure

Discovery reach accounting for coherent neutrino scattering

m_{DM} [GeV]

Nicely illustrates interplay between collider and direct detection experiments

*Any interesting news @ 13 TeV?

*Readiness with 13 TeV data *SUSY search commissioning of key observables with 13 TeV data CMS Preliminary 42 pb⁻¹ (13 TeV) CMS Proliminary

25.0 (GeV)

Examples of trigger turn-ons

HT300_MET100 trigger

* Examples of key discriminating kinematic observables

* alphaT for QCD rejection

H_r (GeV)

HT and HT^{miss} for alphaT>0.55

(GeV

*Search for excited Vector bosons: Z'

*Search in invariant mass of opposite sign di-muon and di-electon pairs

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

mass range	SM Bkg Expection
>1 TeV	0.21
> 2 TeV	0.007
> 2.5 TeV	0.002

	electron 0	electron 1
Ε _τ	1260 GeV	1280 GeV
η	-0.24	-1.31
φ	-2.74 rad	0.42 rad
charge	-1	+1
mass	2.91 TeV	

- *LHC Run1 was a big success even though no evident sign of New Physics
 - *we discovered the Higgs boson
 - *a few deviations at the 2-3 sigma level
 - * http://cms-results.web.cern.ch/cms-results/public-results/
 publications/
- *Run2 offers good prospects for discovery *e.g., resonances, SUSY but also Dark Matter
- *CMS analyses are ready and analyzing data *CMS recorded around 3.5fb⁻¹ in 2015 *some first interesting events

*Interpretation of searches: from full spectra to simplified models

*often a few dominant decay chains

*approximate full spectrum by a few decay chains

CMS-TDR-15-02

*Electron excesses (II)

IST GENERATION LEPTOQUARKS

- Very difficult to reconcile with a LQ hypothesis
 - kinematics are too broad (no peak structure)
- Other possibilities?
 - several propsals, e.g.: arXiv: 1410.5947, arXiv:1408.5439, arXiv:1408.1082, arXiv: 1407.4466

Kinematic edge in opposite sign, same flavour dilepton events SUS-12-019

* Generic search for kinematic endpoint in dilepton mass spectrum, e.g., * $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \chi_1^0 l^+ l^-$ (produces triangular shape with endpoint) * three body decays of $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l^+ l^-$ (produces an "edge")

* In addition, cut and count analysis of events with 20 GeV < m_{μ} < 70 GeV (no shape assumption)

UK HEP Forum - Anomalies & Deviations

163

 6^{+20}_{-21}

0.3

*Experimental Challenges in Run2

*Unfortunately boost in sensitivity from increase in CM energy doesn't come for free

*Large increase in pile-up guaranteed

*Effects on:

- * trigger performance
- * object reconstruction
- * isolation variables

Real data event with 78 reconstructed verteces from high pile-up run (in 2012)

