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What is indirect detection?

Looking for Standard Model particles produced by dark matter
annihilation or decay.

neutrinos – IceCube, Super-K, KM3NET
anti-protons – PAMELA, AMS-02, CALET
anti-deuterons – AMS-02, GAPS
e+e− – PAMELA, Fermi, AMS-02, CALET
→ secondary radiation: inverse Compton, synchrotron, bremsstrahlung
gamma-rays – Fermi-LAT, HESS, CTA
secondary impacts on the CMB, reionisation
‘indirect direct detection’→ impacts on solar and stellar structure
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This talk will summarise the latest limits and
anomalies from each of the red sectors

Liberally infused with opinions, biases towards
what I think is most interesting right now, etc.

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter



What is indirect detection?

Looking for Standard Model particles produced by dark matter
annihilation or decay.

neutrinos – IceCube, Super-K, KM3NET
anti-protons – PAMELA, AMS-02, CALET
anti-deuterons – AMS-02, GAPS
e+e− – PAMELA, Fermi, AMS-02, CALET
→ secondary radiation: inverse Compton, synchrotron, bremsstrahlung
gamma-rays – Fermi-LAT, HESS, CTA
secondary impacts on the CMB, reionisation
‘indirect direct detection’→ impacts on solar and stellar structure

2 photons (or Z+photon): 

monochromatic lines

χ 0

1

χ 0

1

γ

γ/Z

Internal bremsstrahlung: 

hard gamma-ray spectrum

Secondary decay: 

soft(er) continuum spectrum

χ 0

1

χ 0

1

γ

χ 0

1

χ 0

1

SM

SM

SM

SM

SM

SM

SM

SM

π

γ

γ

γ
This talk will summarise the latest limits and
anomalies from each of the red sectors

Liberally infused with opinions, biases towards
what I think is most interesting right now, etc.

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter



What is indirect detection?

Looking for Standard Model particles produced by dark matter
annihilation or decay.

neutrinos – IceCube, Super-K, KM3NET
anti-protons – PAMELA, AMS-02, CALET
anti-deuterons – AMS-02, GAPS
e+e− – PAMELA, Fermi, AMS-02, CALET
→ secondary radiation: inverse Compton, synchrotron, bremsstrahlung
gamma-rays – Fermi-LAT, HESS, CTA
secondary impacts on the CMB, reionisation
‘indirect direct detection’→ impacts on solar and stellar structure

2 photons (or Z+photon): 

monochromatic lines

χ 0

1

χ 0

1

γ

γ/Z

Internal bremsstrahlung: 

hard gamma-ray spectrum

Secondary decay: 

soft(er) continuum spectrum

χ 0

1

χ 0

1

γ

χ 0

1

χ 0

1

SM

SM

SM

SM

SM

SM

SM

SM

π

γ

γ

γ
This talk will summarise the latest limits and
anomalies from each of the red sectors

Liberally infused with opinions, biases towards
what I think is most interesting right now, etc.

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter



What does indirect detection do for us (theoretically)?

Indirect detection probes:
DM mass mχ

annihilation cross-section 〈σv〉 + branching fractions to
different SM final states
→ mediator mass + mediator couplings to DM and SM
decay width Γχ + branching fractions to different SM final
states
→ DM couplings to SM
scattering cross-section with nuclei
(neutrinos + stellar ‘indirect direct detection’ only)
→ mediator mass + mediator couplings to DM and SM
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How (not) to interpret indirect detection in BSM models
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Indirect limits always presented in terms of hard process final states
Actual experiments do not measure those final states – they detect one
type of SM particle produced later: γs, νs, etc
Limits as presented cannot be combined and applied to
models with mixed final states (= all non-toy models)
Proper treatment of indirect detection for BSM searches requires full
phenomenological recast abilities
→ full experimental and theoretical treatment at the same time
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Neutrinos – how does it work?

The cartoon version:

1 Halo WIMPs crash into the Sun
2 Some lose enough energy in the scatter to

be gravitationally bound
3 Scatter some more, sink to the core
4 Annihilate with each other, producing

neutrinos
5 Propagate+oscillate their way to the Earth,

convert into muons in ice/water
6 Look for Čerenkov radiation from the

muons in IceCube, ANTARES, etc
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Neutrinos – IceCube, Super-K et al
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IceCube Collaboration (+PS, Savage, Edsjö) in prep
nulike: model-independent unbinned limit calculator for generic BSM models
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Anti-protons – AMS-02

AMS-02 claims to have seen something DM-like in p̄ . . .

AMS-02, AMS Days 2015
Kappl et al, arXiv:1506.04145

Improved fit of cosmic ray diffusion using AMS boron to carbon
ratio (B/C) suggests otherwise.
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Positrons – PAMELA, AMS-02

Excess over expected background (secondary) positron
ratio observed
First seen by PAMELA, confirmed by Fermi then AMS-02.
Still unexplained.
Could be evidence of dark matter, could be caused by
pulsars

Bergström, Edsjö & Zaharijas 2009

MDM = 3.65 TeV, Model N3, EF=2500
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Resolutions?

There are other issues:
Evidence of a break at
∼300 GeV in p and He
spectra
Not in heavier nuclei (ATIC,
CREAM, AMS-02)

→ hard to explain with DM
→ can explain with:

- pulsars
- modified propagation
- modified acceleration

Future: CALET will test up to
20 TeV – should tell if there
really is a turnover in the
positron fraction

Kappl et al, arXiv:1506.04145
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Types of gamma-ray spectra
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Gamma rays – Targets

Φ ∝ annihilation rate ∝ ρ2
DM

Likely targets:
Galactic centre - large signal, large BG
dwarf galaxies - low statistics, low BG
Galactic halo - moderate signal, moderate BG
clusters/extragalactic diffuse - large modelling
uncertainties, low signal, low BG
dark clumps - low statistics, low BG
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Gamma rays – Galactic Centre
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Once upon a time (∼2012 actually) there was a 4σ+ line at the
Galactic Centre. . .

It went away. Fin.
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Gamma rays – Galactic Centre

Broad excess over naive background diffuse models at E∼GeV

Hooper & Linden, arXiv:1110.0006 Calore et al, arXiv:1409.0042
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So is there really an excess? Depends on your point of view
→ lots of background and foreground freedom not yet explored
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Gamma rays – Galactic Centre

It does roughly follow expected morphology of the DM halo
though. . .
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Hooper&Goodenough 2010

Boyarsky+ 2010

Hooper&Slatyer 2013

Gordon+ 2013

Abazajian+ 2014

Daylan+ 2014

Calore+ 2014

Fermi coll. (preliminary)

contracted NFW γ = 1.26

Fermi Bubbles (extrapolated)

HI + H2 (at z < 0.2 kpc)

Calore et al, arXiv:1411.4647
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Gamma rays – Galactic Centre

Photon clustering analyses – smooth emission or point
sources?

Bartells et al, arXiv:1506.05104
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Lee et al, arXiv:1506.05124
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Looks like probably point sources just below threshold
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Gamma rays – Galactic Centre

Photon clustering analyses – smooth emission or point
sources?

Bartells et al, arXiv:1506.05104
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Lee et al, arXiv:1506.05124
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Gamma rays – Dwarfs
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reconstruction
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Gold standard for indirect
detection.

Excludes canonical thermal cross-section up to mχ∼100 GeV.
Note model dependence though!
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Gamma rays – Dwarfs – Reticulum II

8 new southern dwarf galaxies already in Dark Energy Survey
after 1 yr – some look useful, especially Reticulum II
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About a 2σ excess, depending on
background assumptions and data class

→ May be interesting to see how this pans
out once J factors are more settled

Geringer-Sameth et al PRL 2015
Bonnivard et al ApJL 2015
Simon et al ApJ 2015
Koushiappas, talk at TeVPA 2015
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Gamma rays – Galactic centre ‘excess’ state of play

Fermi-LAT arXiv:1503.02641
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Thermal Relic Cross Section
(Steigman et al. 2012)

Safest money is on pulsars (. . . again. . . )
Unlikely to be smooth component of DM – but
*maybe* minihalos
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Future prospects – CTA

102 103 104

DM particle mass mχ [GeV]

10−26

10−25

10−24

10−23

10−22

10−21

Se
lf-

an
ni

hi
la

ti
on

cr
os

s-
se

ct
io

n
〈σ
v
〉[

cm
3

s−
1
]

3%
1%

0.3%

χχ→ bb̄, 100 hours

CTA Ring method
CTA Morph. analysis
CTA Morph. analysis (3% syst.)
CTA Morph. analysis (0.3% syst.)

HESS GC
Fermi-LAT dSph
Doro et al. 2013, CTA
Wood et al. 2013, CTA
Pierre et al. 2014, CTA

→ CTA will be helpful, but its abilities tend to be oversold
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Summary I: current status

Indirect detection is now a mature field: ν, γ, charged cosmic
rays, CMB + stars

There are anomalies:
Positron excess persists
Claimed anti-proton excess seems a bit of a beat up
Galactic Centre gamma-ray excess probably exists
Dark matter explanations looking increasingly unlikely vs
pulsars

→ Indirect detection has arrived at the party. . . but DM is still
fashionably late.
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Summary II: where to next?

Definitive first detection of DM now seems unlikely to come
from indirect searches

=⇒ We need to cross-correlate indirect searches with
each other and with other searches
must be done in such a way that all data are consistently
applied per model to different BSM scenarios
=⇒ Global fits (Fittino, MasterCode, GAMBIT)
=⇒ using ‘pheno translators’: nulike, gamlike, etc
(cf. situation with HiggsBounds, HiggsSignals)
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Backup slides
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Impacts of DM annihilation on the CMB

Energy injection from DM annihilation/decay at z ∼ 600
→ Would change ionisation balance via γs and e+e−

interaction with electrons and H
→ Changes timing + extent of recombination
→ Distortion of CMB angular power spectrum
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The IceCube Neutrino Observatory

86 strings
1.5–2.5 km deep in
Antarctic ice sheet
∼125 m spacing
between strings
∼70 m in DeepCore
(10× higher optical
detector density)
1 km3 instrumented
volume (1 Gton)
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