#### Indirect Detection of Dark Matter

Pat Scott

#### Imperial College London

#### Slides available from tinyurl.com/patscott

Imperial College London

#### What is indirect detection?

Looking for Standard Model particles produced by dark matter annihilation or decay.

- neutrinos IceCube, Super-K, KM3NET
- anti-protons PAMELA, AMS-02, CALET
- anti-deuterons AMS-02, GAPS
- $e^+e^-$  PAMELA, Fermi, AMS-02, CALET
  - $\rightarrow$  secondary radiation: inverse Compton, synchrotron, bremsstrahlung

- gamma-rays Fermi-LAT, HESS, CTA
- secondary impacts on the CMB, reionisation
- $\bullet~$  'indirect direct detection'  $\rightarrow$  impacts on solar and stellar structure



#### What is indirect detection?

Looking for Standard Model particles produced by dark matter annihilation or decay.

- neutrinos IceCube, Super-K, KM3NET
- anti-protons PAMELA, AMS-02, CALET
- anti-deuterons AMS-02, GAPS
- e<sup>+</sup>e<sup>-</sup> PAMELA, Fermi, AMS-02, CALET
  - $\rightarrow$  secondary radiation: inverse Compton, synchrotron, bremsstrahlung
- gamma-rays Fermi-LAT, HESS, CTA
- secondary impacts on the CMB, reionisation
- $\bullet~$  'indirect direct detection'  $\rightarrow$  impacts on solar and stellar structure



This talk will summarise the latest limits and anomalies from each of the red sectors

Liberally infused with opinions, biases towards what I think is most interesting right now, etc. Imperial College

## What is indirect detection?

Looking for Standard Model particles produced by dark matter annihilation or decay. ncreasing controversy

- neutrinos IceCube, Super-K, KM3NET
- anti-protons PAMELA, AMS-02, CALET
- anti-deuterons AMS-02, GAPS
- e<sup>+</sup>e<sup>-</sup> PAMELA, Fermi, AMS-02, CALET
- → secondary radiation: inverse Compton, synchrotron, bremsstrahlung
- gamma-rays Fermi-LAT, HESS, CTA
- secondary impacts on the CMB, reionisation
- 'indirect direct detection' → impacts on solar and stellar structure



This talk will summarise the latest limits and anomalies from each of the red sectors

Liberally infused with opinions, biases towards what I think is most interesting right now, etc. Imperial College

## What does indirect detection do for us (theoretically)?

Indirect detection probes:

- DM mass  $m_{\chi}$
- annihilation cross-section  $\langle \sigma v \rangle$  + branching fractions to different SM final states

 $\rightarrow$  mediator mass + mediator couplings to DM and SM

decay width Γ<sub>χ</sub> + branching fractions to different SM final states

 $\rightarrow$  DM couplings to SM

 scattering cross-section with nuclei (neutrinos + stellar 'indirect direct detection' only)
 → mediator mass + mediator couplings to DM and SM



## How (not) to interpret indirect detection in BSM models



- Indirect limits always presented in terms of hard process final states
- Actual experiments do not measure those final states they detect one type of SM particle produced later: γs, νs, etc
- Limits as presented cannot be combined and applied to models with mixed final states (= all non-toy models)
- Proper treatment of indirect detection for BSM searches requires full phenomenological recast abilities
   Imperial College
  - $\rightarrow$  full experimental and theoretical treatment at the same time London

#### Neutrinos – how does it work?



Halo WIMPs crash into the Sun





- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound





- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core



- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing neutrinos



- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing neutrinos
- Propagate+oscillate their way to the Earth, convert into muons in ice/water



- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing neutrinos
- Propagate+oscillate their way to the Earth, convert into muons in ice/water
- Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc



#### Neutrinos – IceCube, Super-K et al



IceCube Collaboration (+PS, Savage, Edsjö) *in prep*Imperial College
nulike: model-independent unbinned limit calculator for generic BSM models London

AMS-02 *claims* to have seen something DM-like in  $\bar{p}$ ...



Improved fit of cosmic ray diffusion using AMS boron to carbon ratio (B/C) suggests otherwise.

Imperial College

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

#### Positrons – PAMELA, AMS-02

- Excess over expected background (secondary) positron ratio observed
- First seen by PAMELA, confirmed by *Fermi* then AMS-02. Still unexplained.
- Could be evidence of dark matter, could be caused by pulsars



Pat Scott - Nov 5 - UK HEP Forum 2015

Indirect Detection of Dark Matter

#### **Resolutions?**

There are other issues:

- Evidence of a break at ~300 GeV in p and He spectra
- Not in heavier nuclei (ATIC, CREAM, AMS-02)
- $\rightarrow$  hard to explain with DM
- $\rightarrow$  can explain with:
  - pulsars
  - modified propagation
  - modified acceleration

Future: CALET will test up to 20 TeV – should tell if there really is a turnover in the positron fraction Kappl et al, arXiv:1506.04145



• 3 main gamma-ray channels:

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

Imperial College London



- 3 main gamma-ray channels:
  - monochromatic lines

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

## Types of gamma-ray spectra



- 3 main gamma-ray channels:
  - monochromatic lines
  - internal bremsstrahlung (FSR + VIB)

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

## Types of gamma-ray spectra



- 3 main gamma-ray channels:
  - monochromatic lines
  - internal bremsstrahlung (FSR + VIB)
  - continuum from secondary decay

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

### Types of gamma-ray spectra



- 3 main gamma-ray channels:
  - monochromatic lines
  - internal bremsstrahlung (FSR + VIB)
  - continuum from secondary decay

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

#### • $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$

#### Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\text{DM}}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

•  $\Phi \propto \text{annihilation rate} \propto \rho_{\rm DM}^2$ 

Likely targets:

- Galactic centre large signal, large BG
- dwarf galaxies low statistics, low BG
- Galactic halo moderate signal, moderate BG
- clusters/extragalactic diffuse large modelling uncertainties, low signal, low BG
- dark clumps low statistics, low BG

#### Gamma rays – Galactic Centre



Weniger, JCAP 2012

London

Once upon a time (~2012 actually) there was a  $4\sigma$ + line at the Galactic Centre...

#### Gamma rays – Galactic Centre



Weniger, JCAP 2012

London

Once upon a time (~2012 actually) there was a  $4\sigma$ + line at the Galactic Centre...

#### It went away. Fin.

#### Broad excess over naive background diffuse models at $E{\sim}\text{GeV}$



So is there *really* an excess? Depends on your point of view  $\rightarrow$  lots of background and foreground freedom not yet explored

Imperial College London

#### Gamma rays – Galactic Centre

It does roughly follow expected morphology of the DM halo though...



# Photon clustering analyses – smooth emission or point sources?

Bartells et al, arXiv:1506.05104



Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

# Photon clustering analyses – smooth emission or point sources?



Looks like probably point sources just below threshold

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

#### Gamma rays – Dwarfs



Fermi-LAT arXiv:1503.02641

- Pass 8 event reconstruction
- 6 years of data
- 15 dwarfs

Gold standard for indirect detection.

Excludes canonical thermal cross-section up to  $m_{\chi} \sim 100$  GeV. Note model dependence though!

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

#### Gamma rays – Dwarfs – Reticulum II

8 new southern dwarf galaxies already in Dark Energy Survey after 1 yr – some look useful, especially Reticulum II



About a  $2\sigma$  excess, depending on background assumptions and data class

 $\rightarrow$  May be interesting to see how this pans out once *J* factors are more settled

Geringer-Sameth et al *PRL*Bonnivard et al *ApJL*Simon et al *ApJ*Koushiappas, talk at *TeVPA*

> Imperial College London

## Gamma rays - Galactic centre 'excess' state of play

#### Fermi-LAT arXiv:1503.02641



- Safest money is on pulsars (... again...)
- Unlikely to be smooth component of DM but \*maybe\* minihalos

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

Imperial College

London

#### Future prospects – CTA

Silverwood, Weniger, PS, Bertone JCAP 2015

London



 $\rightarrow$  CTA will be helpful, but its abilities tend to be oversold Imperial College

Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

Indirect detection is now a mature field:  $\nu,\,\gamma,$  charged cosmic rays, CMB + stars

There are anomalies:

- Positron excess persists
- Claimed anti-proton excess seems a bit of a beat up
- Galactic Centre gamma-ray excess probably exists
- Dark matter explanations looking increasingly unlikely vs pulsars

 $\rightarrow$  Indirect detection has arrived at the party. . . but DM is still fashionably late.

Definitive first detection of DM now seems unlikely to come from indirect searches

- We need to cross-correlate indirect searches with each other and with other searches
- must be done in such a way that all data are consistently applied per model to different BSM scenarios
- Global fits (Fittino, MasterCode, GAMBIT)
   using 'pheno translators': nulike, gamlike, etc (cf. situation with HiggsBounds, HiggsSignals)

**Backup slides** 



Pat Scott – Nov 5 – UK HEP Forum 2015 Indirect Detection of Dark Matter

#### Impacts of DM annihilation on the CMB

Energy injection from DM annihilation/decay at  $z \sim 600$ 

- $\rightarrow\,$  Would change ionisation balance via  $\gamma {\rm s}$  and  $e^+e^-$  interaction with electrons and H
- → Changes timing + extent of recombination
- → Distortion of CMB angular power spectrum



Pat Scott – Nov 5 – UK HEP Forum 2015 In

Indirect Detection of Dark Matter

## The IceCube Neutrino Observatory

- 86 strings
- 1.5–2.5 km deep in Antarctic ice sheet
- ~125 m spacing between strings
- ~70 m in DeepCore (10× higher optical detector density)
- 1 km<sup>3</sup> instrumented volume (1 Gton)

