Lattice field theory

Christine Davies University of Glasgow

DiRAC

PPAP community meeting Sept. 2015

Applications of Lattice QCD/Lattice field theory

Particle physics

QCD parameters

Hadron spectrum

Hadron structure

Annual proceedings of
lattice conference:
http://pos.sissa.it/

CKM elements

Theories beyond the Standard Model

Glueballs and exotica QCD at high temperatures and densities Nucle

Nuclear masses and properties

Nuclear physics

Quantum gravity

Astrophysics

condensed matter physics computational physics computer science ... UK landscape - people 8 university teams in UKQCD consortium. Key members of international collaborations e.g Fastsum, Hadspec, HPQCD, QCDSF, **RBC-UKQCD**, strongBSM

Different methods for handling quarks, optimised for different physics, but crosschecks important. Results impact:

LHC, BES, KEK, JLAB, J-PARC, DAFNE, RHIC, FAIR ...

UK landscape - computers Distributed Research using Advanced Computing =

STFC's HPC facility for theoretical particle physics, astrophysics and cosmology.

Phase 2 (2012-15) - £15M capital from BIS plus input from HEIs and STFC - now operating fully as a facility: operating costs now awarded by STFC.

5 machines at 4 sites (Cambridge, Durham, Edinburgh and Leicester) - coordinated management and peer-reviewed resource allocation (starting Dec. 2012) open to all

where are the phenomenologists?

aim to focus on a few architectures suited to physics problems, NOT one-size-fits-all

Lattice field theory uses two machines:

1) 6-rack BG/Q at Edinburgh. 20 in top 500 (2012) - 1Pflops numerically more intensive calcs, e.g. gauge field generation 2) Sandybridge/infiniband cluster at Cambridge. 93 in top 500 (2012) - 200 Tflops data intensive calcs, e.g. physics analysis on gauge fields

Machines coming to end of useful life.

Quark masses and strong coupling constant

More detailed study of unstable and excited states important to pin down oddities now being seen (e.g. in charmonium spectrum)

Key future aim: study tetra/pentaquark states, hybrids, glueballs - needs very high stats and large basis of operators.

DiRAC-1 & 2

DiRAC-3

Future: DiRAC-3

Seeking £25M capital from BIS for upgrade by factor ~10 from 2015. 3 machine types based on RFI responses from potential vendors. Science/technical cases reviewed. Benchmarks for procurement being assembled.

Lattice field theory prime interest in two: "extreme scaling" and "data driven discovery" f 5 Pflops, 3Pbyte Intel Knights Landing Lattice field theory prime interest in two: 2 Pflops, 1Pbyte tightly-coupled, 14Pbyte longer-term

• If successful will need recurrent costs for electricity and support staff.

• Increase in PDRAs and PhDs in particle theory would improve exploitation capabilities and HPC training impact.

Future (to 2018 with 10x computing power)..

- improve precision flavour physics - add QED and $m_u \neq m_d$
- reduce m_b, m_c errors for 0.5% SM $\sigma(H \rightarrow b\overline{b})$
- calc. masses of $c\overline{c}$ X, Y, Z; glueballs, tetra/penta quarks
- precision transport coefficients in QGP
- map out range of technicolor theories

	Quantity	CKM/	Current	Current	2018
•		expt	expt	lattice	lattice
		process	Error	Error	Error
	f_K/f_{π}	$ V_{us} $	0.2%	$0.2\%^{*}$	0.1%
	$K \to \pi \ell \nu$	$ V_{us} $	0.2%	$0.3\%^\dagger$	< 0.2%
	f_D	$ V_{cd} $	4%	2%	< 1%
	f_{D_s}	$ V_{cs} $	2%	1%	< 1%
	f_B	$ V_{ub} $	12%	$2\%^*$	1%
	f_{B_s}	$B_s \to \mu^+ \mu^-$	25%	$2\%^*$	1%
	$f_{B_s}^2 B_{B_s}(\Delta M_s)$	$ V_{ts}V_{tb} ^2$	0.24%	$10\%^\dagger$	3%
	$\Delta M_s / \Delta M_d$	$ V_{ts}/V_{td} $	0.4%	$4\%^\dagger$	1%
	B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	$1.5\%^\dagger$	< 1%
	$D \to \pi \ell \nu$	$ V_{cd} $	3%	$4\%^\dagger$	2%
	$D \to K \ell \nu$	$ V_{cs} $	0.5%	$1.5\%^{*\dagger}$	0.5%
	$D_s \to \phi \ell \nu$	$ V_{cs} $	4%	$4\%^{*}$	2%
	$B \to \pi \ell \nu$	$ V_{ub} $	4.1%	$9\%^\dagger$	2%
	$B \to D/D^* \ell \nu$	$ V_{cb} $	1.3%	2%	< 1%
	$B_s \rightarrow \phi \mu^+ \mu^-$		20%	$10\%^{*}$	4%

Table 1: Current world's best uncertainties from lattice QCD

- pairulations of important hadronic matrix elements which over S1ZC constrain the Standard Model in combination with experiment, and those we expect to reach with DiRAC-3 by 2018, * indicates where
- Constat achieved sing Vice Constant and Surten calculation in progress there which will reduce errors. kaon/B physics/proton decay

achieve 1% on HVP contribute to muon g-2 + calc. HlbL
results for: LHC, FNAL, BES, KEK, JLAB, DAFNE, RHIC, FAIR ...