

LHCB STATUS REPORT

Event 41383468 Run 153460 Wed, 03 Jun 2015 11:52:09

@GreigCowan (Edinburgh) On behalf of LHCb-UK PPAP, Sept 24th 2015

• Detector status and plans for the upgrade

• Physics highlights from past year (70% UK-led):

- CP violation in the beauty + charm systems
- Lepton (non-)universality
- Rare *B* decays
- Pentaquarks and top physics

c.f. ~ 500 papers each from ATLAS/CMS.

LHCB IN THE UK

- \sim 800 authors, \sim 20% with UK affiliations
- LHCb spokesperson (Guy Wilkinson)
- Two previous physics coordinators (Tim Gershon, GW)
- EB, membership committee, operations chair, VELO and RICH project leaders.
- $\blacksquare~\sim 25\%$ of physics working-group convenors from UK
- UK responsibility for construction and M&O of VELO and RICH
- 30% (20%) of storage and compute provided by T1 (T2's).

http://www.lhcb.ac.uk @LHCb_UK

Detector status and upgrade plans

THE LHCB DETECTOR

Run-2 status

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

- Huge success so far!
- New trigger configuration commissioned.
 - Offline reconstruction in the trigger!

- Online calibration + alignment allows physics analyses directly from the trigger.
 - Only tracks and vertices that caused event to trigger are saved (no offline reco).
 - Used for high yield samples $(J/\psi, D^0, D^+...)$

NEW SUB-DETECTOR: HERSCHEL

- Opportunity to advance the study of Central Exclusive Production in Run-2.
 - Already started work in Run-1 (e.g., [arXiv:1505.08139]).
- Need to tag background at very high rapidity $(5 < |\eta| < 8)$.

- Herschel is series of forward shower counters, some > 100m from pp interaction.
- Detector installed and working.
- Now commissioning read-out electronics and integration with LHCb trigger system.

BEYOND RUN-2: THE LHCB UPGRADE

- Aim: significant increase in event statistics.
- Increase \mathcal{L} to 2×10^{33} cm⁻²s⁻¹.
- Improve detector readout from 1MHz \rightarrow 40MHz. Use full software trigger.
- Will have big impact for hadronic decays (e.g., $10 \times$ charm).

UPGRADED VELO

- Pixel detector: 55 μ m × 55 μ m pixels.
- Radiation dose of 10¹⁶ protons/cm².
- Detector will be 5 mm from LHC beam.
- New 250 μm aluminium RF foil but re-use as many components as possible.

UK ACTIVITIES

- Pixel detectors, hybrids, cables and readout electronics.
- Micro-channel channel cooling.
- Assembly and testing of modules.
- Assembly of the detector.

UPGRADED RICH

[LHCB-TDR-014]

(UK LED)

- High-occupancy environment in Run-3.
- RICH-1 layout optimized \Rightarrow new mirrors and mechanics.
- New MAPMT photodetectors (R11265 + H12700 from Hamamatsu) replace HPDs.
- New readout electronics and magnetic shielding.
- Maintain excellent charged particle PID.

UK ACTIVITIES

- Photon-detector testing.
- Electronics and firmware.
- Mechanics and mirrors.
- Assembly of the detector.

BRAT STORAGE Pion MisID Efficiency / % Black : Lumi4 current geometry Blue : Lumi10 current geometry * Red : Lumi20 current geometry 10 Green : Lumi20 upgraded geometry 80 85 90 95 Kaon ID Efficiency / %

• Maintain excellent charged particle PID.

LHCB IN THE HIGH-LUMINOSITY LHC ERA

- LHCb-upgrade will be installed in LS2 and operate during Run-3.
- Initial ideas to consolidate LHCb-upgrade in LS3 so that it can operate in Run-4 (HL-LHC operation).
 - ⇒ Stations in the magnet (to improve reconstruction of multi-body final states).
 - ⇒ Improvements to PID via time-of-flight (UK-led project)

- ECFA flavour working group investigating if there is a physics case to continue operating LHCb in HL-LHC era (Run-5).
 - This would only make sense with further upgrades to allow higher luminosity.
 - Discussions started with LHC about operating IP8 at $\mathcal{L} = 1.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.

	LHC era			HL-LHC era		
$\int \mathcal{L} dt$	2010-12	2015 - 18	2021-23	2026-29	2031 + +	
Ū.	(Run-1)	(Run-2)	(Run-3)	(Run-4)	(Run-5)	
ATLAS, CMS	$25{\rm fb}^{-1}$	$100 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$	\rightarrow	$3000{\rm fb}^{-1}$	
LHCb	$3 {\rm fb}^{-1}$	$8{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$46 {\rm fb}^{-1}$	$100 {\rm fb}^{-1}$	

SEARCHING FOR NEW PHYSICS

ON-SHELL

Cannot produce particles with $mc^2 > E$

OFF-SHELL

 $\begin{array}{l} \mbox{Higher energy particles can} \\ \mbox{appear virtually in quantum loops} \\ \mbox{\rightarrow flavour physics} \end{array}$

History: top quark mass predicted by quark mixing

CP violation in the quark sector

CP VIOLATION IN THE STANDARD MODEL

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} \, V_{\rm us} \, V_{\rm ub} \\ V_{\rm cd} \, V_{\rm cs} \, V_{\rm cb} \\ V_{\rm td} \, V_{\rm ts} \, V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Wolfenstein parameterisation

- 3 generations + 1 phase → η ≠ 0 is only source of CP violation in SM.
- CKM picture confirmed up to $\sim 20\%$.
- Couplings show strong hierarchy not seen in lepton sector
 ⇒ "SM flavour puzzle"

New Physics should have flavour structure similar to SM...

• ... or the NP scale is very very large (~ 100 TeV) \Rightarrow "NP flavour puzzle"

• Need more **precision measurements** to look for small deviations.

Tree-level measurement of γ

- Least well known of the CKM angles.
- Can be measured entirely from tree decays where there is small residual theory uncertainty $|\delta\gamma| \leq \mathcal{O}(10^{-7})$ [Brod, Zupan JHEP 1401 (2014) 051]
- Use interference between $B^{\pm} \to D^0 K^{\pm}, D^0 \to f$ decay amplitudes.
- Time-independent $B^{\pm} \to D^0 K^{\pm}$ and $B^0 \to D K^* \dots$
- ... or time-dependent $B_s^0 \to D_s^+ K (\gamma 2\beta_s)$

Best precision comes from combining many independent decay modes.

B-factories: $\sigma(\gamma) \sim 15^{\circ}$; Final LHCb Run-1: $\sigma(\gamma) \sim 7^{\circ}$.

[LHCb-CONF-2014-004]

<u>CP</u> VIOLATION IN $b \rightarrow c\bar{c}s$ DECAY + MIXING

 $= 2 \operatorname{arg}(V_{tb}V_{ts}^*)$ ϕ_{mix} $\phi_{decay} = \arg(V_{cb}V_{cs}^*)$

 $\phi_s \equiv -\arg\left(\frac{q}{p}\frac{A_f}{\overline{A}_f}\right)$

Precise prediction for ϕ_s from global fit [CKMFitter]

 $\phi_s = -0.034 \pm 0.033$ rad $\Delta \Gamma_s = 0.082 \pm 0.006 \, \mathrm{ps}^{-1}$ Dominated by LHCb [PRL 114

- New physics not large.
- need to control SM effects (penguins).
- Also competitive in B^0 system $(\sin 2\beta)$ and in gluonic penguin decays $(B_s^0 \to \phi \phi).$

New physics prospects

Assume that NP only enters B^0 and B_s^0 mixing: $M_{12}^{d,s} = (M_{12}^{d,s})_{SM}(1 + h_{d,s}e^{2i\sigma_{d,s}})$.

CHARM PHYSICS

- Only way to study FCNC with *u*-type quarks. Allows to probe higher energy scales than bdecays.
- Huge event yields have led to huge progress in CP violation in charm mixing and rare decays.
 - Will take advantage of higher cross-section and new trigger configuration in Run-2.

$$A_{\Gamma} \equiv \frac{\tau(\overline{D}^0 \to h^+ h^-) - \tau(D^0 \to h^+ h^-)}{\tau(\overline{D}^0 \to h^+ h^-) + \tau(D^0 \to h^+ h^-)} = -a_{CP}^{\text{ind}} - a_{CP}^{\text{dir}} y_{CP}$$

1.1

|d/p|35

$|V_{ub}|$ USING $\Lambda_b \to p\mu\overline{\nu}_\mu$

• Long-standing discrepancy between inclusive + exclusive measurements of $|V_{ub}|$.

• Thought to be impossible for LHCb.

- Challenging at hadron collider to separate $b \rightarrow u\mu\nu$ and $b \rightarrow c\mu\nu$ processes without beam energy constraint of e^+e^- machine.
- Large production of Λ_b baryons at LHC. Cleaner than $B \to \pi l \nu$ due to protons in final state.

OPEN

 $\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)_{q^2 > 15 \text{ GeV}}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)_{q^2 > 7 \text{ GeV}}} R_{\text{FF}}$

Determination of the quark coupling strength $|V_{ub}|$ using baryonic decays

- Normalise to the V_{ch} decay, $\Lambda_h \to \Lambda_c \mu \nu$ and use world average $|V_{cb}|$ value.
- Fit corrected mass (peaks at mass of Λ_b):

Interpretation of inclusive/exclusive discrepancy in terms of RHC now disfavoured.

Lepton universality

LEPTON UNIVERSALITY $(\overline{B^0} \to D^{*+} \tau \nu_{\tau})$

- CKM mechanism well tested, but room for NP if coupling more to 3rd generation (e.g., charged Higgs).
- B-factories already reporting deviation from theoretically clean SM prediction.

Interesting given the hints of non-universality in $B^+ \to K^+ l^+ l^-$ decays (R_K) and excl/incl measurements of V_{ub}, V_{cb} .

LEPTON UNIVERSALITY $(\overline{B^0} \rightarrow D^{*+} \tau \nu_{\tau})$ [prl 115, 111803 (2015)]

- Very challenging measurement at hadron collider (no beam constraints and large backgrounds).
- Use $\tau \to \mu \nu_{\mu} \nu_{\tau} \ (BF = 17.41 \pm 0.04\%)$
 - Signal and normalisation have same final state particles.
- Large samples of events, triggering on charm.
- \blacksquare Template fit to kinematic variables \rightarrow

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030 \ (2.1\sigma \text{ from SM})$$

$$R(D^*) \equiv \frac{\mathcal{B}(\overline{B^0} \to D^{*+} \tau \nu_{\tau})}{\mathcal{B}(\overline{B^0} \to D^{*+} \mu \nu_{\mu})}$$

LEPTON UNIVERSALITY $(B^+ \to K^+ l^+ l^-)$

[PRL 113,151601 (2014)]

- In the SM only the Higgs boson has non-universal lepton couplings.
- This results in SM predictions of nearly unity for various decay-rate ratios

Interesting given the indications of non-SM physics in other $b \rightarrow s$ penguin decays (see later).

Viewpoint: A Challenge to Lepton Universality

Physics

Rare (FCNC) B meson decays

Observation of $B_s^0 \to \mu^+ \mu^-$

- Helicity suppressed by factor $(m_{\mu}/m_B)^2$. $\mathcal{B}(B^0_s \to \mu\mu)_{\rm SM} = (3.66 \pm 0.23) \times 10^{-9}$
 - $\mathcal{B}(B^0 \to \mu\mu)_{\rm SM} = (1.06 \pm 0.09) \times 10^{-10}$
 - [PRL 112, 101801 (2014)]

- Sensitive to scalar and pseudoscalar NP couplings, e.g., in MSSM $\mathcal{B} \propto (\tan \beta)^6$
- $\mathcal{B}(B^0 \to \mu\mu)/\mathcal{B}(B^0_s \to \mu\mu) \text{ consistent with SM at } \sim 2\sigma.$

Observation of the rare $B_s^0 \rightarrow \mu^+ \mu^-$ decay from the combined analysis of CMS and LHCb data

$B^0 \to K^* \mu^+ \mu^-$ and friends

- $b \rightarrow s$ "penguin" decays are loop/CKM suppressed.
- $B^0 \to K^* \mu^+ \mu^-$ has rich system of observables (rates, angles, asymmetries) that are sensitive to NP.

$$q^2 \equiv m(\mu^+\mu^-)^2$$

$B^0 \to K^* \mu^+ \mu^-$ and friends

- Alternative observables less dependent on hadronic form factors [Descotes-Genon et al arXiv:1303.5794].
- Also BR of many other $b \to s\mu^+\mu^$ transitions are lower than expected.

[Altmannshofer, Straub]

[arXiv:1503.06199]

 $\operatorname{Re}(C_{10}^{\operatorname{NP}})$

-3

Global fit to all $b \to s\mu^+\mu^-$ data prefers NP scenario with negative C_9 Wilson coefficient at 3.7σ .

Possible Z'? Leptoquarks? [many authors]

LHCP-C

NF-2015-002

LHCb

è.°

How well do we understand QCD-effects? [Lyon, Zwicky]

 $\operatorname{Re}(C_{9}^{\operatorname{NP}})$

 $q^2 \,[{\rm GeV^2/c^4}]$

DARK BOSONS

600

800 24900 35 m(u+u) [MeV] 35

• $b \rightarrow s$ penguins are an excellent lab to search for low-mass hidden-sector particles (e.g., anything that mixes with the Higgs sector). • Search for $B \to K^* \chi, \chi \to \mu \mu$ by scanning $m(\mu \mu)$ B^0 K^{*0} and allowing non-zero $\tau(\mu\mu)$. $\psi(2S) + \psi(3770)$ J/ψ ω Candidates / 10 MeV Prompt 20 Displaced LHCb 15 3000 200 1000 2000 4000 $m(\mu^+\mu^-)$ [MeV] Theory No evidence for χ -boson, so set model-independent limits on BR of $10^{-7} \rightarrow 10^{-9}$, depending on $\tau(\mu\mu)$. LHCb Very strong constraints placed on theories that invoke 10 mixing with the Higgs sector. Theory

Exotic spectroscopy, top physics and Run-2 data

PENTAQUARKS

[PRL 115 (2015) 072001]

- Two pentaquark states observed in $\Lambda_b \to J/\psi \, p K^-$
- **6**D amplitude fit performed (coherent sum of resonant states).
- Fit quality insufficient if only using $\Lambda^* \to pK$ resonances.
- Need two P_c states of opposite parity.

- Prospect first raised 50 years ago by Gell-Mann, Zweig.
- LHCb states have quark content ccuud

Largest CERN physics news story this year! (others were LHC start-up) Generated huge interest in community.

- Forward $t\bar{t}$ production used to constrain gluon PDFs at large x and test NNLO.
- Use highest yield mode: $t \to W + b$ -jet, with $W \to \mu \nu$.
- Jet reco using particle flow approach (anti- k_T).
- Developed b, c-jet taggers ($\varepsilon = 65,25\%$), with low light-jet mistag rate (0.3%) [arXiv:1505.04051]

- Data cannot be described by only W + b-jet. 5.4 σ observation.
- Use excess above W + b-jet to measure inclusive production in fiducial region.

$$\begin{aligned} \sigma(t\bar{t} + t + \bar{t}) &= 239 \pm 53 \pm 38 \text{ fb } [7\text{TeV}] \\ \sigma(t\bar{t} + t + \bar{t}) &= 289 \pm 43 \pm 46 \text{ fb } [8\text{TeV}] \end{aligned}$$

Both agree with SM prediction.

First results at $\sqrt{s} = 13 \text{ TeV}$

- New trigger and automatic calibration/alignment validated with early measurements (mainly 50ns ramp).
- First results with Run-2 data! J/ψ and charm cross-sections agree with expectations.

SUMMARY

- Outstanding physics performance from LHCb at Run-1.
- Many unexpected results as we expand from core *CP* violation and rare decay programme:
 - studying modes involving ν , electrons, π^0 , photons
 - pentaquarks, top physics, heavy ions, central exclusive production...
- Exciting indications of non-SM physics in related channels:
 - $R(D^*), R_K, P'_5, b \to s$ penguin branching ratios.
 - Looking forward to more data in Run-2 and beyond!
- Run-2 start-up successful and results starting to come out.
- LHCb-upgrade on track for installation in 2019.

SENSITIVITY PROSPECTS LHCb-PUB-2014-040

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B^0_s \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \rightarrow J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-)$ (10 ⁻⁴)	3.4	2.2	0.4	-
$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	-

Before upgrade.

- After upgrade.
- Current theory uncertainty.

CP violation in $B^0 \to J/\psi K_{ m s}^0$

- $$\begin{split} S_{J/\psi} & _{K_{\rm S}^0} \approx \sin 2\beta \\ S_{J/\psi} & _{K_{\rm S}^0} = +0.731 \pm 0.035 \pm 0.020 \\ C_{J/\psi} & _{K_{\rm S}^0} = -0.038 \pm 0.032 \pm 0.005 \end{split}$$
 - Consistent with world average and similar precision to B-factories.
 - **HL-LHC**: expect $\sigma(S_{J/\psi K_S^0}) \sim 0.005$, similar from Belle-II.

Controlling penguin pollution in ϕ_s

- Difficult-to-calculate non-perturbative hadronic effects could lead to big enhancement.
- Measure δ_{Penguin} using decays where penguin/tree ratio is enhanced.

[Faller et al. arXiv:0810.4248, De Bruyn & Fleischer, arXiv:1412.6834]

- Use SU(3) relations to link B_s^0 and B^0 (broken at level of 20-30%).
- $|\delta_{\rm P}| < 1.8^{\circ}$

c.f.
$$\sigma(\phi_s) = \pm 2.0^{\circ}, \ \sigma(\phi_d) = \pm 1.4^{\circ}$$

[LHCB-CONF-2015-004

HEAVY ION PHYSICS - THE RIDGE

- Study of two-charged-particle correlation in $\Delta \eta$ and $\Delta \phi$ allows the study QCD and collective effects in collisions.
- A long-range correlation on the near side (the ridge at $\Delta \phi \approx 0$) is observed in both p+Pb and Pb+p.
- Most pronounced for $1 < p_T < 2$ and high event activity (many VELO hits).
- In common activity regions, ridges are compatible for p+Pb and Pb+p.

Impact of $|V_{ub}|$ on unitarity triangle

• LHCb $|V_{ub}|$ result consistent with world average value of $\sin 2\beta$.

$CP \text{ VIOLATION IN } B^0_{(s)} \text{ MIXING } (|B^0_{L,H}\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle)$

41/35

LHCB TRIGGER

ϕ_s PROSPECTS

- Upgraded detector will be read out at 40MHz.
- Factor-10 increase signal yields.
- Existing design will saturate at higher luminosities.

$\sin^2 \theta_W$

[LHCB-PAPER-2015-039]

