Precision Lepton Measurements

Physics to the PeV Scale

Themis Bowcock

Smörgåsbord

- srEDM
 - muEDM*
 - eEDM (prototype pEDM)
- Lepton Rare Decays
 - mu3e
 - mu2e*

muEDM@FNAL

Phase-I Part of g-2 experiment (first measurement)

– No additional cost to STFC !

- see anything in muons, sign of new physics
- $|d_e| < 10^{-29}$ e cm, the current results, for 2nd generation muons 10 orders of magnitude worse, $|d_{\mu}| < 1.8 \times 10^{-19}$ e cm
- g-2@FNAL will get improve this by two orders of magnitude

Examples of a 4-loop diagram, the lowest order contributing to lepton EDMs in the Standard Model, and 5-loop diagram

Workshop happening right now at Oxford!

Muon EDM

What do we measure? Tilt in precession plane

- Oscillations out of the plane
- Tracker Technique used by E821
- UK Trackers are a unique opportunity

When?

- 2017 (first data) and updates BUT ...
- Improvements (this method) depend on two factors (Phase II)
 - i) Statistics (number of trackers)
 - ii) Performance of the trackers

R&D for update

- Replace straws with ultra-compact tracking stations (HV-CMOS) O(20) stations (from 3)
- Could also improve g-2 itself by 2018/2019

Improved systematics could yield almost an additional order of magnitude Aim for $|d_{\mu}| < 10^{-21}$ e cm *Build prototype 2016*

Why?

- HV-CMOS trackers of large interest for the future (ATLAS, ILC, ...)
- This could be the first deployment in "anger"
- Improve existing amazing sensitivity to anomalous magnetic moment of muon and muon EDM.

Team

- For baseline mEDM (now)
 - Oxford
 - Liverpool
 - UCL
- Support from experiment extension with compact tracker(s)
 - All welcome!
 - UK could do it all

proton storage ring EDM

e(p)EDM

- eEDM is a prototype for a pEDM experiment
- Ideas from same original g-2 team
- pEDM "like" g-2 but ALL electric
 - Counter rotating beams enable huge cancellation of systematics
 - Study polarization of protons

2014 received P5 support under all scenarios

Marciano estimates physics reach ~ 3PeV

Physics strength comparison (Marciano)

System	Current limit [e·cm]	Future goal [e⋅cm]	Neutron equivalent physics
Neutron	<1.6×10 ⁻²⁶	~10 ⁻²⁸	10 ⁻²⁸
¹⁹⁹ Hg atom	<3×10 ⁻²⁹	<10 ⁻²⁹	10 ⁻²⁵ -10 ⁻²⁶
¹²⁹ Xe atom	<6×10 ⁻²⁷	~10 ⁻²⁹ -10 ⁻³¹	10 ⁻²⁵ -10 ⁻²⁷
Deuteron nucleus		~10 ⁻²⁹	3×10 ⁻²⁹ - 5×10 ⁻³¹
Proton nucleus	<7×10 ⁻²⁵	<10 ⁻²⁹	10 ⁻²⁹

Physics

Sensitivity to Rule on Several New Models

- "All" technical problems solved for pEDM (TDR writted)
- Host (*was* to be BNL)
 - \$50M
 - Could be built in 5-10 years
 - Discussions with labs
- Demonstrator with electrons (few \$M) Mostly for electric deflectors & sextupoles, control system,
 - eEDM (mixed electric/magnetic)
 - Compact (room size)
 - But only gets to 10⁻²⁹ecm

proton storage ring FDM

What's in it for the UK

- Physics
- For a low cost (one or two staff) we could land the contract (>> \$10M) for the electrostatic deflectors
 - HV technology (for accelerators)
- The active element (polarimeter) in pEDM case can be Si and have huge technical advantage over existing COSY@Juelich device
 - "Simple". Can be delivered in months.

proton storage ring EDM

New idea in UK

• pEDM (Cockcroft, Liverpool, UCL)

All welcome (invite Yannis Semertzides)

- eEDM
 - Very recent idea (Royal Holloway, +...)
 - (Special polarimeter non-suitable for Si)

CLFV/mu2e

What is Mu2e? A search for Charged-Lepton Flavor Violation

 $\mu^{-} N \rightarrow e^{-} N$

October 2014
mi National Accelerator Laboratory
Batavia, IL 60510
www.fnal.gov

Managed by Fermi Research Alliance, FRA For the United States Department of Energy under Contract No. DE-AC02-07-CH-11359

FLV in the field of a nucleus

Use *current* Fermilab accelerator complex to reach a sensitivity 10 000 better than current world's best

$\mu N \rightarrow eN$ sensitive to wide array of New Physics models

D.Glenzinski, Fermilab

 $\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \left(\sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L\right).$

Mu2e extends beyond MEG for all BSM interaction types and conversion process has sensitivity to non-dipole BSM that MEG doesn't.

Basics

- Generate a beam of low momentum muons (μ^-)
- Stop the muons in a target
 - Mu2e plans to use aluminum
 - Sensitivity goal requires ~10¹⁸ stopped muons
- The stopped muons are trapped in orbit around the nucleus
 - In orbit around aluminum: τ_{μ}^{AI} = 864 ns
 - Large τ_{μ}^{N} important for discriminating background
- Signature an Experimental signature is an electron and nothing else
 - Energy of electron: $E_e = m_{\mu} E_{recoil} E_{1S-B.E.}$
 - For aluminum: $E_e = 104.96$ MeV
- Measure the rate compare to "normal" captures.

Total number of stopped muons

1,000,000,000,000,000,000

Some Perspective

1,000,000,000,000,000 = number of stopped Mu2e muons = number of grains of sand on earth's

beaches

RAL TD has already received \$1M of DOE funding to design/provide the production target.

This provides 10¹⁰ stopped muons/sec !

Investigating several options

- Prompt Al 2p-1s muon transitions
- Delayed (864 ns) gamma from muon nuclear capture
- Slow (9-min) gamma from Mg*

With shuttered or highly collimated detector (Ge/LaBr(Ce)) in a high radiation environment ($\sim 1000 \text{ n/s/cm}^2$)

US Support

In 2013 the Facilities Panel gave Mu2e the highest endorsement:

"The science of Mu2e is *Critical* to the DOE OHEP mission and is *Ready to Construct*."

In the 2014 P5 report Mu2e is strongly supported: Recommendation 22, "Complete the Mu2e and Muon (g-2) Projects."

Timeline

Beamline excavation done and Mu2e experimental hall will be complete in summer of 2016

0.12 MeV resolution at 105 MeV for straws

Detector and solenoid prototypes now under test at FNAL

50% (40 km!) of superconducting cable for solenoids is fabricated and required performance demonstrated.

Reconstructed e Momentum

Single event sensitivity of 2.6x10⁻¹⁷ 100 more sensitive than COMET-I

Data taking to begin in 2020 for 3-4 years: immediately after the g-2 running.

There is a window for the UK to produce one of the major systems for the experiment in the next 4 years. UK/STFC is expert in Ge technology.

Ensures UK has a prominent in the Intensity Frontier/FNAL programme before DUNE and continuing from successful CDF/D0 – MINOS – Nova - g-2 involvement and the UK's investment in the FNAL Muon Campus.

Interest

- Liverpool
- UCL
- Manchester
- Edinburgh(?)

mu3e

- Similar physics to mu2e (PSI experiment)
- Look at 1 in 10¹⁶ decays (10⁴ better than before)
 (MEG), Sindrum
- CFLV with $\mu \rightarrow eee$

Heavily suppress $\mu \rightarrow eeevv$ (over 16 orders magnitude with kinematic cuts) (and timing)

HV-CMOS detectors (Peric) – 50um resolution

Detector

- HV-CMOS (now!) (Theme???)
- Perfect fit to UK technical capabilities
- Little investment needed
- UK needed ...

Summary

- Timely interest in this sort of experiment
 - In context of Bs and neutrinos & direct searches
 - Theoretical support
 - International community interest
- Windows to the PeV scale
- UK strategic opportunities in short, medium and long term
 - HV-CMOS
 - Accelerator Physics (STFC business)
- Not necessarily a high cost for entry
- Potential high payoff
- Classic (beautiful) measurements & good training ground for next generation of physicists