# **CMS** Status



## Dave Newbold on behalf of CMSUK



• Upcoming 'Run II' possibly *the* crucial era in the LHC programme

- Potential for discovery is greatly enhanced in 13TeV running
- Detectors and analysis techniques well understood; conditions relatively stable
- The challenge
  - Over 20 years, we successfully constructed detectors and then exploited them
  - In Run II: physics, R&D, construction and M&O happen in parallel
  - The load on the collaboration is now higher than ever before
- CMS is in good shape for Run II
  - However: 2015 has taught us not to take anything for granted
  - Huge work has been required for the (successful) re-commissioning of CMS

Dave.Newbold@cern.ch





## **Publications to Date**



428 papers submitted as of 2015-09-21



3833 papers found, 3162 of them citeable (published or arXiv)

| Citation summary results          | Published only |
|-----------------------------------|----------------|
| Total number of papers analyzed:  | <u>655</u>     |
| Total number of citations:        | 38,718         |
| Average citations per paper:      | 59.1           |
| Breakdown of papers by citations: |                |
| Renowned papers (500+)            | <u>5</u>       |
| Famous papers (250-499)           | <u>10</u>      |
| Very well-known papers (100-249)  | <u>70</u>      |
| Well-known papers (50-99)         | <u>117</u>     |
| Known papers (10-49)              | <u>207</u>     |
| Less known papers (1-9)           | <u>155</u>     |
| Unknown papers (0)                | <u>91</u>      |
| h <sub>HEP</sub> index [?]        | 92             |

### http://cms-results.web.cern.ch/cms-results/public-results/publications





## Where we Stand: Higgs

## The final story on Run I Higgs

- Couplings are consistent with the SM; No evidence for any BSM Higgs
- ATLAS / CMS combination paper to be submitted next month
- Strong UK participation across the Higgs sector! (incl. BSM searches)
- Signal strength:

$$\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)}$$



🔕 🔮 BRISTOL



# Higgs: Not Just Discovery...



UK-led results: Discovery -> Precision measurement -> BSM

University of BRISTOL



- Comprehensive CMS search for supersymmetry
  - From model-independent inclusive searches to specific decay modes
  - Covering a large number of signatures and final states
  - EWKino production, 3rd generation squarks, gluinos and heavy squarks
- For pedestrians: SUSY is > ~1TeV, or good at hiding



6

🖉 🖌 University of

🙆 🔮 BRISTÓL



# Activities during LSI

- New beam pipe
- Tracking and muon systems
  - Move to low temp. tracker running
  - 4th endcap muon station 'restored'
- Calorimetry
  - New HCAL readout system installed
  - Improved ECAL and HCAL online calibration
- New luminosity monitor systems
- Online systems:
  - New DAQ front end / new timing system
  - New L1 calo trigger for PP and HI running
    - Full trigger upgrade for 2016
- HLT / Computing
  - Bring offline-style pileup mitigation to HLT
  - CPU / memory savings for high PU reco  $\sqrt{1}$



Rutherford Appleton Laboratory

🖉 🖌 University of

🔕 🔮 BRISTOL



## New LI Calo Trigger

**Current Calo Trigger System** 



HCAL HF HCAL ECAL energy energy energy energy Layer 1 Regional Calo Trigger Calo Trigger EM Region candidates energies Layer 2 Global Calo Trigger Calo Trigger EM candidates EM candidates Jet candidates Jet candidates Energy sums Energy sums Global Global Trigger Trigger Level-1 Accept Level-1 Accept

## Interim L1 calo for PP and HI

- Improved tau trigger
- PU subtraction for jets and energy sums
- Installed and triggering CMS since August
- Key proof of principle for major 2016 L1 trigger upgrade









## Data at 13TeV

#### CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV



- At full CMS field: 0.42/fb delivered, 0.38/fb recorded
  - Running efficiency is now over 90%





# **CMS Magnet Cryo Systems**

- Complex underground cryogenic system
- A series of issues with helium contamination observed during 2015







## Cryo Status

## Symptoms

- Frequent clogging of filter components requires more regular maintenance
- Requires cold-box stop, and ramp-down
- The solenoid itself is *not* the concern
- Magnet-off periods synchronised with LHC to avoid data loss

## Interventions

- Several complex / invasive modifications made to cold box – non trivial
- Some signs of improvement in last weeks
- CERN tech support has been exceptional
- Longer term solution
  - Complete solvent cleaning and/or replacement of components in YETS 15-6









## **I 3TeV Results: QCD**



- $dn/d\eta$ : the traditional first paper
- This analysis without magnetic field using pixel detector
- (Some) generators still work at 13TeV...







## **I 3TeV Results: Top**





## **I 3TeV Results: Searches**



## Dijet resonance search

- Constrains many different models (strings, q\*, W' / Z', etc)
- 65/pb string limits already more stringent than Run I!





# (Much) More to Come



m<sub>tt</sub>=2.5TeV



### µ+MET, m<sub>T</sub>=1.1TeV

| operation |               |                 |    |      |    |     |    |                                      |    |      |    |     |         |    |    |
|-----------|---------------|-----------------|----|------|----|-----|----|--------------------------------------|----|------|----|-----|---------|----|----|
|           | July          |                 |    |      |    | Sep |    |                                      |    |      |    |     |         |    |    |
| Wk        | 27            | 28              | 29 | 30   | 31 |     | 32 | 33                                   | 34 | 35   |    | 36  | 37      | 38 | 39 |
| Мо        | 29            | 6               | 13 | 20   | 27 |     | 3  | 10                                   | 17 | Σ    | 24 | 31  | 7       | 14 | 21 |
| Tu        |               |                 |    |      |    | ♥   | (  |                                      |    | >    |    |     |         |    |    |
| We        | Leap second 1 | Interaity       |    | MD 1 |    |     |    |                                      |    |      |    | TS2 |         |    |    |
| Th        |               | with 50 ns beam |    |      |    |     |    | Intensity ramp-up<br>with 25 ns beam |    |      |    |     | Jeune G |    |    |
| Fr        |               |                 |    |      |    |     |    |                                      |    | MD 2 |    |     |         |    |    |
| Sa        |               |                 |    |      | 1  |     |    |                                      |    |      |    |     |         |    |    |
| Su        |               |                 |    |      |    |     |    |                                      |    |      |    |     |         |    |    |

- ▶ 2015: 5/fb?
- ▶ 2016: 35/fb?
- Run II: 100/fb?







## Prospects





# Phase-2 Upgrade Programme



- CMS Phase-2 upgrade 'Scope Document' now finalised
  - Three scenarios for upgrade, and the physics consequences of each
  - Examination of the implications of  $\langle PU \rangle = 200$
  - Next step is indication of the cost envelope & global detector optimisation
- Timeline has key TDRs scheduled ~18 months from now

Dave.Newbold@cern.ch





## **Phase-2 Scope Studies**







## **UK R&D: Trigger**



- Hardware for 2016 calorimeter trigger is now operational
  - Parallel running with existing trigger system in coming weeks
- New trigger utilises advances in FPGA & optolink technology
  - Significant improvements in all trigger algorithms at high pileup



Science & Technology Facilities Council

19



# UK R&D:Trigger



- Entire trigger is now in programmable logic
  - Continuous improvement and tuning of algorithms will be needed
- R&D for longer term upgrades is now under way
  - Optimal correlation of tracking, ECAL/HCAL, HGC and muon objects
  - Propose to exploit new generation of flexible processor platform





## UK R&D: Silicon Tracker Upgrade

### Silicon tracker with trigger-stub capability



## UK deliverables

CBC low-power readout ASIC; Off-detector track trigger processor







## **UK R&D: Tracker Module Tests**



Successful beam test of first 'stacked' module prototypes





## UK R&D: CBC3 Design Progress



Almost complete. Areas outlined in red, where work is in final stages.







# **UK R&D: ECAL**





## **UK R&D: ECAL**





- Extract all 36 barrel supermodules
  - Replace all FE and VFE electronics cards
  - New system reads out full data from detector







# UK R&D: High-Granularity Calorimeter



- Current endcap calorimetry will not remain performant in LS3
  - Due to combination of radiation damage and high pileup conditions
- Plan to replace by integrated high-granularity calorimeter
  - Sampling calorimeter with silicon sensors, optimised for high pileup
  - High granularity readout (~1cm<sup>2</sup>) + precision timing capability (<50ps)</li>





## UK R&D: HGC



### Construction:

- Hexagonal Si-sensors built into modules.
- *Modules* with a W/Cu backing plate and PCB readout board.
- Modules mounted on copper cooling plates to make wedge-shaped cassettes.
- Cassettes inserted into absorber structures at integration site (CERN)

### Key parameters:

- 593 m<sup>2</sup> of silicon
- 21,660 modules
- 92,000 front-end ASICS.
- Power at end of life 115 kW.

System Divided into three separate parts:

EE – Silicon with tungsten absorber – 28 sampling layers – 25  $X_o$  + ~1.3  $\lambda$ 

- FH Silicon with brass absorber 12 sampling layers 3.5  $\lambda$
- BH Scintillator with brass absorber 11 layers 5.5  $\lambda$

EE and FH are maintained at  $-30^{\circ}C$ . BH is at room temperature.

Dave.Newbold@cern.ch





## **UK R&D: HGC**





## Summary

- A crucial new era for LHC is about to start
  - 13TeV energy at high lumi offers enormous scope for discovery
- CMS is ready for Run II
  - Well understood detector and conditions, already allowing rapid physics output
  - A rich physics programme is now just ahead of us
- Challenges for coming years
  - Operating, rebuilding and exploiting highly complex detector, all in parallel
  - We should not be complacent about the need for ongoing expert effort
- The long-term future
  - CMS upgrade programme taking firm shape for the next ten years
  - Investment of time and resources required to unlock Phase-2 physics
- The LHC will drive the physics direction in the medium term
  - Results vital in informing the full breadth of the future field
  - Detector upgrades vital for long-term scientific return from CERN
  - Vibrant CMSUK effort vital for the health of UK particle physics











## Phase-2 Upgrade

| Performance/<br>Physics | Higgs<br>VBF H→ττ       | Higgs<br>H→µµ      | Higgs<br>H→ZZ→4I   | Higgs<br>HH→bbγγ | Higgs<br>HH→bbττ        | SMP<br>VBS   | SUSY<br>VH(bb)<br>+MET | EXO<br>A <sub>fb</sub> (Z') | EXO<br>Dark<br>Matter | EXO<br>HCP | BPH<br>B <sub>s,d</sub> →µµ |
|-------------------------|-------------------------|--------------------|--------------------|------------------|-------------------------|--------------|------------------------|-----------------------------|-----------------------|------------|-----------------------------|
| Tracker                 |                         |                    |                    |                  |                         |              |                        |                             |                       |            |                             |
| Performance             |                         | mass<br>resolution | mass<br>resolution | b-tagging        | b-tagging               |              |                        |                             |                       |            | mass<br>resolution          |
| Extensions              | forward jets<br>/ MET   |                    | acceptance         |                  | MET<br>resolution       | forward jets | MET<br>resolution      | acceptance                  | acceptance            |            |                             |
| Trigger                 |                         |                    |                    |                  |                         |              |                        |                             |                       |            |                             |
| Bandwidth               | acceptance              |                    |                    |                  | acceptance              |              |                        |                             |                       |            |                             |
| Track Trigger           | background<br>rejection |                    |                    |                  | background<br>rejection |              |                        |                             |                       |            | background<br>rejection     |
| Calorimeter             |                         |                    |                    |                  |                         |              |                        |                             |                       |            |                             |
| ECAL                    | forward jets<br>/ MET   |                    | acceptance         | acceptance       | MET<br>resolution       | forward jets | MET<br>resolution      | acceptance                  | acceptance            |            |                             |
| HCAL                    | forward jets<br>/ MET   |                    |                    |                  | MET<br>resolution       | forward jets | MET<br>resolution      |                             |                       |            |                             |
| Muons                   |                         |                    |                    |                  |                         |              |                        |                             |                       |            |                             |
| Extension               |                         |                    | acceptance         |                  |                         |              |                        | acceptance                  | acceptance            |            |                             |





## **SUSY Projections**

Based on: arXiV:1409.4075v2.pdf

Limits from 8 TeV monojet search and projected limits for 3 LHC scenarios: - 13 TeV 30 fb<sup>-1</sup> - 14 TeV, 300 fb<sup>-1</sup> - 14 TeV, 3000 fb<sup>-1</sup> LUX 2013 limits and projected limits for LZ assuming 10 tonne-year

**Discovery reach** accounting for coherent neutrino scattering

O. Buchmuller

exposure





Science & Technology Facilities Counci



## **SUSY Benchmark Models**









 ${\rm eV}$ 



