The Fermilab Muon g-2 Experiment

Mark Lancaster

Aim of Experiment

Make a 0.14 ppm measurement

Anomalous Contribution

Additional "loop" interactions give a non g=2 contribution

$$a_{\mu} = \left(\frac{g-2}{2}\right)$$

This is the so-called anomalous contribution

These interactions <u>flip the chirality</u> of the muon but conserve flavour and CP.

$$\gamma = \frac{\alpha}{2\pi} = 0.00116 \ 140980$$

= 0.00116 591792 (SM all loops)

Theory consensus

Comparison of SM & BNL Measurement

Present measurement is at odds with SM at 3.5σ level and now broad consensus on SM value

A 0.14 ppm measurement moves this to more than 5σ irrespective of theory.

SM contribution

Hadronic, EWK and 5th order QED contributions are all in play.

Uncertainty on EWK and QED is tiny and SM uncertainty is dominated by hadronic uncertainty.

Hadronic Uncertainty

Consensus average over several independent determinations a la PDFs at LHC.

Largest contribution to uncertainty is not theory but the precision, compatibility (and range) of low energy e^+e^- cross section data.

SM Hadronic Uncertainty

While there are tensions amongst the various e^+e^- datasets reflected in a conservative error these are far from sufficient to explain away the BNL anomaly.

The SM hadronic estimate would need to be wrong by 6σ and this would shift α_{EM} and the EWK fit of the Higgs mass.

You cannot cook-up a zero g-2 SM anomaly and be consistent with the LHC Higgs mass !

SM Hadronic Uncertainty

Expect that hadronic estimate will be improved by a factor of 2 in time for FNAL g-2 result from:

- more precise data with more channels and ISR vs direct-scan from BES-3, SND, CMD-3, KLOE-2, final BaBar and then Belle-2

- lattice calculations of the HLBL

This would mean a 5.5σ significance from the experimental improvement becomes 9.7σ .

BSM Landscape

Measurement probes much of the same TeV-scale BSM landscape as LHC.

Â

] [(

Complements LHC

LHC cannot probe all of phase space e.g. small mass slepton/neutralino mass differences, high tanβ.

In event of LHC BSM observation g-2 measurement can resolve degeneracy in model pars & improve their determination e.g. tan β .

Muon : Electric Dipole Moment

Essentially zero in SM : any observation is new physics

Muon is the only 2nd flav. gen. measurement. and it's free of nuclear / molecular effects

BNL limit is 1.8 x 10⁻¹⁹

Can quickly be improved by x10 and ultimately x100 to 10⁻²¹

Needs non mass-scaling BSM effects to see anything given e⁻ EDM limit

FNAL g-2 Experimental Technique

24 calorimeters and 3 straw-strackers (UK) measure e⁺ for O(1 ms) for spills separated by 10ms.

16,000 stored 3.09 GeV muons from 10¹² protons per spill.

Storage ring at BNL

Mark Lancaster : PPAP 2015 : p12

Storage Ring At FNAL

g-2

Mark Lancaster : PPAP 2015 : p13

Muon Campus at FNAL

Mark Lancaster : PPAP 2015 : p14

Seven FNAL g-2 improvements

Mark Lancaster : PPAP 2015 : p15

q-2

Muon focussing Quads

Mark Lancaster : PPAP 2015 : p17

Ring has been cooled & powered

Magnet now on at 1.45T (4.5k) : start of B-field data-taking.

Measured mechanical strains/motion as expected from BNL.

Shimming of magnet for next 9 months to improve field uniformity by a factor of 100 prior to installation of detectors.

Improvements to injection system

Fermilab Muon g-2 Experiment

Mark Lancaster : PPAP 2015 : p19

New Detectors

Calorimeter (PbF₂ + SiPMT)

- more segmented.
- x2 sampling (800M/s) vs BNL
- quicker response (5 ns)
- improved energy resolution

Straw Trackers (UK)

- authenticate pileup
- measure muon profile
- identify lost muons
- calibrate calorimeter
- measure EDM

UK building 24 trackers + spares

Funding for 2 RAs + techs. £1M PPRP.

And off detector electronics, DAQ DQM & offline tracker software.

Also prototyping ³He magnetometer

Mark Lancaster : PPAP 2015 : p21

Performing as expected in three testbeams at FNAL

UK is leading offline and online analysis

CD2/3 approved and fully funded (\$47M)

	Q1	Q2	2 0	3 C	24	Q1	Q	2 C	23	Q4	Q1	Q2	Q3	Q4	Q	1 Q	2 C	23 (Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	3 Q4	Q1	Q2	2 Q3	Q4	Q1	Q2	Q3	Q4
	1	20)1	4			2(01	15	1		20	1	6		2	01	17		1	20	18	3		20	1	9		20)2	0	2	20	2	1
G-2																																			
CRYO PLANT																																			
RING ASSEMBLY																																			
RING POWER/FIELD																																			
SHIMMING																																			
DETECTOR PROTOTYPES																																			
DETECTOR CONSTRUCTION																																			
DETECTOR INSTALLATION																				-	BNI	. ST	ATS												
ACCELERATOR/BEAMLINE																				/															
FIRST BEAM/COMMISSIONING																		/									1	×2	D BN	LST	ATS				
PHYSICS DATA TAKING																										1									
START OF MU2E RUNNING																																			

Schedule unchanged since 2013: 1st data taking period will end in 2017

Conclusion

g-2 is a critical measurement in establishing (or not) integrity of BSM models in concert with LHC: particularly the non-colour sector

UK making most significant contribution to experiment outside of US.

We need to cast the BSM-search net wide: if the current anomaly persists then FNAL g-2 would establish BSM at 9σ

Mark Lancaster : PPAP 2015 : p25

Methodology

$$\vec{\mu} = g \frac{Qe}{2m} \vec{s}$$

Interaction between magnetic moment (spin) with B-field.

pMSSM Models

CMSSM cannot accommodate BNL result since assumes slepton masses are TeV+ like the excluded squarks/gluons.

M. Cahill-Rowley et al., Eur. Phys. J72, 2156 (2012); Phys. Rev. D 88, 035002 (2013).

SM Hadronic Uncertainty

HVP estimate is now being independently verified from lattice calculations.

Presently shows nothing seriously wrong with e⁺e⁻ data estimate but lattice uncertainty needs to come down by a factor-2 to be insightful.

New Kicker Magnet

Mark Lancaster : PPAP 2015 : p29

	-

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	—	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
Lost muons	0.09	Running at higher n -value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
CBO	0.07	Higher n-value; straw trackers determine parameters	0.03
E-Field/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
Diff. Decay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
Total	0.20		0.07

Competition: J-PARC Muon g-2 Â $-\frac{e}{m}\left|a_{\mu}ec{B} ight|$ Х FNAL/BNL approach : use magic γ (29.3), p = 3.09 GeV muons. J-PARC proposal : use E ~ 0 : ultra-cold muons (low β) : larger (and more uniform) B (3T MRI magnet)

Unlike FNAL/BNL approach. This technique has yet to be proven to work

V-PARC g-2

V-PARC g-2 : Several Challenges

Getting a sufficient rate of ultra cold muons (require 10⁶ /sec and 10¹² e⁺)

Avoiding pile-up issues in detector with the 1 MHz rate

Achieving v. small vertical beam divergence : $\Delta p_T/p_T = 10^{-5}$

Requires advances in "muonium" production

- target materials e.g. nano-structured SiO₂
- lasers (pulsed 100 µJ VUV) to ionise muonium (x100)

Muon EDM

Muon EDM in two BSM models.

BSM predictions range from: 10⁻²¹ to 10⁻²⁸

Dark Photons

Fermilab Muon g-2 Experiment

g-2

LOCL

New results from NA48

Complementarity with Mu2e

Â

Rate (CLFV) ~ $g^2 \times \theta_{e\mu}^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$ $a_{\mu} \sim g^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$

But no theoretical motivation for any particular θ_{eu} value.

Need **both** measurements to resolve model degeneracy

