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The Standard Model
● The Standard Model is by now an old theory

● In particular in the area of flavour physics, a large number 
of anomalies have shown up in the past few years

●

●

●

●

●

●

●

●

● Cracks are at a level where they can't be ignored

Introduction
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The Standard Model
● Is this the rise of New 
Physics to prominence?

● A new consistent theory 
arises from the ruins

●

●

● Or will the Standard Model 
be restored to former glory?

Reappraisal of theoretical 
uncertainties makes 
anomalies go away

Introduction
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Why flavour physics?
● Any physics model (SM or NP) has to deal with the 
observed flavour structure we observe

● In SM this is through the Yukawa couplings to the Higgs 
field and the weak force

● Misalignment of these gives structure of CKM matrix
● Wide range: m

u
 = O(10-5) m

t
, |V

ub
|=O(10-3) |V

tb
|   Why???

Any NP model with new flavoured particles or flavour 
breaking interactions must “hide” behind SM interactions

● NP mass scale very large (>~100 TeV)
● or

● NP mimics Yukawa couplings (minimal flavour violation)

● Both choices can be argued to be un-natural
● Further measurements required

Introduction
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The proposed facilities available

LHCb

Belle-II

2014 2030202620222018

ATLAS/CMS

TLEP

LHCb upgrade

Year

Introduction
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Questions to ask
● For a given prospective measurement, we need to ask 
the questions

● What level of statistical accuracy could be expected?
● How will experimental systematics be controlled?
● What are the theoretical uncertainties with measurement 
and can they be reduced?

● From answers conclude if measurement is actually 
interesting

● Will aim to show here that there are still plenty of 
interesting measurements

● Will focus on places where anomalies are currently showing 
up

Introduction
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What ?
● Electroweak penguin decays

● B→µ+µ-

● B→K*µ+µ-

● Lepton non-universality
● BF(B→Kµ+µ-) / BF(B→Ke+e-)
● BF(B→D*τν)/BF(B→D*µν)

● Anomalous top decays
●CP violation

● The lack of anomalies in the CKM triangle

Introduction
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How ?
● Think of properties of quarks that we are interested in

● Lifetime
● Both b- and c-hadrons have lifetime in ps region. With 

momentum in 100 GeV region this gives decay distance 
around 10 mm.

● Mass of bottom and top
● Mass of decaying quark sets transverse momentum scale

● p
T
/p sets geometry of detector

● Forward detector for c- and b-hadrons
● 4π for t decay

●

Introduction
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How ?
QCD background

● To see the effects of New Physics in heavy flavour decays 
we need to be able to calculate how the SM looks like

● Uncertainties coming from QCD is the main problem here
● Two ways out of this

● Look for decays with leptons in
● Look for CP violation

● Trigger
● Decays of interest range from 

● Precision CP violation in Charm → kHz signal
● B decays with 10-10 branching fraction → 10 nHz signal

● LHCb detector is optimised to fulfil those criteria for 
beauty and charm (and ATLAS/CMS for top)

Introduction
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Rare decays
● Look at decays which in the SM model can't happen at 
tree level

● Flavour changing neutral current decays the largest group
● NP can enter in at either tree or loop level
● Decays with dimuons are 
good candidates for rare 
searches

● Rely on excellent muon 
identification

●

EW penguins

J. Instrum.8 (2013) P10020

http://dx.doi.org/10.1088/1748-0221/8/10/P10020
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B→µ+µ-

● The two very rare decays B0
s
→µ+µ- and B0→µ+µ- have 

attracted much interest
● Easy to predict SM branching fraction with great precision

● BF(B0
s
→µ+µ-)

SM
 =  (3.56 ± 0.18) x 10-9     (time averaged)

● BF(B0  →µ+µ-)
SM

 =  (0.10 ± 0.01) x 10-9

● Sensitive to the scalar sector of flavour couplings

SM

EW penguins
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B→µ+µ-

Topology of decay simple
● Challenge is to keep trigger and selection efficiency high, 
while rejecting combinatorial background

Signal

EW penguins
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B→µ+µ-

Topology of decay simple
● Challenge is to keep trigger and selection efficiency high, 
while rejecting combinatorial background

Combinatorial
background

EW penguins
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B→µ+µ-

LHCb+CMS combined for observation of B0
s
→µ+µ-

● BF =                               6.2σ significant

● Evidence for B0→µ+µ-

● BF=                                3.2σ significant

(2.8−0.6
+0.7 )×10−9

EW penguins

(3.9−1.4
+1.6

)×10−10

Nature 522, 68–72 (2015)
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B→µ+µ-

Topology of decay simple
● Challenge is to keep trigger and selection efficiency high, 
while rejecting combinatorial background

●

EW penguins

Nature 522, 68–72 (2015)
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B→µ+µ-

For Run II, the clear goal is to aim observation of B0→µ+µ-

● In the SM suppressed by |V
ts
|2/|V

td
|2~25

● LHCb upgrade expect to 
measure the ratio to a 35% 
accuracy

● CMS upgrade at full 3 ab-1 
expected to reduce this to 21%

● Depends critically on ability 
to keep peaking backgrounds 
under control

●

● B0
s
→τ+τ- an interesting 

opportunity for TLEP
●

EW penguins

CMS PAS FTR-13-016
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The penguin laboratory
● The decay B0→K*0µ+µ-, K*0→K-π+ is in the SM only 
possible at loop level

● On the other hand NP can show up at either tree or loop level

● Angular analysis of 4-body K-π+µ+µ- final state brings large 
number of observables 

● Interference between these
●

●

●

● ... and their right-handed counterparts

EW penguins
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B0→K*0µ+µ- angular analysis
● The Wilson coefficients describe the effective couplings 
from a higher energy scale

● The matrix element of the decay is controlled by the K*0 
polarisation amplitudes 

● These are functions of the Wilson coefficients as well as the 
form factors arising from hadronic effects

● The form factors can be calculated using light cone sum rules 
(mainly at low q2) or lattice QCD (mainly large q2)

EW penguins
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B0→K*0µ+µ- angular analysis
● The angular distribution can be fully described through 
the coefficients of an expansion in spherical harmonics

●

●

●

●

● Which can then form CP averaged quantities and CP 
asymmetries

EW penguins
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B0→K*0µ+µ- angular analysis
Each of the angular coefficients can be expressed as a 
sum of bilinears of the K*0 polarisation amplitudes

●

●

● And ratios can be formed where the theoretical 
uncertainty can be reduced

●

●

● Several observables also have reduced uncertainty of 
zero points

EW penguins

P ' 5=S5 √F L(1−F L) ,   2F L≡S1c

AFB=
3
4
S6s
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B0→K*0µ+µ- angular analysis
Results based on 3 fb-1 from LHCb

EW penguins
LHCb : ArXiv: 1512.04442

http://arxiv.org/abs/1512.04442
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B0→K*0µ+µ- angular analysis
Unbinned fit result in region 1<q2< 6 GeV2

See UE, Petridis, Patel (JHEP 06 (2015) 084 ) for method

EW penguins
LHCb : ArXiv: 1512.04442

http://arxiv.org/abs/1512.04442
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Performing global fits 
From C. Bobeth, LHCb implications workshop

EW penguins

https://indico.cern.ch/event/395704/
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Performing global fits 
● The SM is disfavoured at ~4σ in 
all the different fits

●

● Several options for NP fit that are 
hard to distinguish

● C
9

NP = -1, C
10

NP = 0

● Leads towards Z' type models

● C
9

NP = -C
10

NP = -1

● Leptoquark models

● C
9

NP = -C
9

' NP = -1

● Leads to L-R symmetric models
●

EW penguins
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Lepton non-universality
● Lepton universality is one of the corner stones of the 
Standard Model

● Only theoretical uncertainty in ratios of semileptonic 
decays is from different masses of quarks

●

● Z decays tested lepton universality at the 0.1% level
● Heavy flavour decays test e-µ universality in B→Klν at 
the 5% level

● For µ-τ universality the constraints are poorer
● In charm, a single constraint by BF(D

s
+→τ+ν)/BF(D

s
+→µ+ν) 

at 10% level

Lepton non-U
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Lepton universality test in B+→K+l+l-

Due to lepton universality, the B→Kµµ and B→Kee
decays should have same BF to
within a factor 10-3

● The ratio
●

●

●

● Sensitive to lepton flavour 
violating NP

● Look in q2< 6 GeV2 region
● Muon mode and its control mode 
B+→K+J/ψ, J/ψ→µµ are easy

B
+
→

K
+
µ

+
µ

-
B

+
→

K
+
J/
ψ

LHCb : PRL113, 151601 (2014)

Lepton non-U

http://arxiv.org/ct?url=http://dx.doi.org/10%2E1103/PhysRevLett%2E113%2E151601&v=451e9258
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Lepton universality test in B+→K+l+l-

For the electron channel, analysis divided up in categories
●

●

●

●

●

●

●

●

● Electron mode control overall uncertainty

LHCb : PRL113, 151601 (2014)

Lepton non-U

http://arxiv.org/ct?url=http://dx.doi.org/10%2E1103/PhysRevLett%2E113%2E151601&v=451e9258
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Lepton universality test in B+→K+l+l-

Measurement is compatible with earlier, but less precise 
measurements

LHCb : PRL113, 151601 (2014)

Lepton non-U

http://arxiv.org/ct?url=http://dx.doi.org/10%2E1103/PhysRevLett%2E113%2E151601&v=451e9258
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B+→D*+ τ ν
● LHCb recent result

Phys. Rev. Lett. 115 (2015) 112001

Lepton non-U
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B+→D(*)+ τ ν global fit
● The measurements are internally consistent and have a 
4σ tension with SM prediction

●

Lepton non-U
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Flavour changing neutral currents in top
With massless quarks, flavour changing neutral current 
decays are forbidden in the SM (GIM mechanism)

●

●

●

● Comparing to the top mass, all other quarks are nearly 
massless

● FCNC for top 
(t → c X, t → u X) are
suppressed by huge 
factor in SM

● Not the case for many 
NP models

●

●

arXiv: 1311.2028

(Nearly) forbidden
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Flavour changing neutral currents in top
● ATLAS/CMS searches in

● single top 
● t→Zq decays

ATL-PHYS-PUB-2013-007

(Nearly) forbidden
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Flavour changing neutral currents in top
● ATLAS/CMS searches 
in

● single top 
● t→Zq decays

● But at the moment 
effects on B penguin 
decays sets  a better 
limit (LHCb)

JHEP05 (2013) 062

ATL-PHYS-PUB-2013-007

(Nearly) forbidden
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Flavour changing neutral currents in top
● ATLAS/CMS searches 
in

● single top 
● t→Zq decays

● But at the moment 
effects on B penguin 
decays sets  a better 
limit (LHCb)

● But TLEP is also very 
competitive

JHEP05 (2013) 062

ATL-PHYS-PUB-2013-007

arXiv:1408.2090
√s=350 GeV, ∫L=100 fb−1

(Nearly) forbidden

http://arxiv.org/abs/1408.2090
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No heavy flavour CP  violation anomalies?
● The global CKM fits do not show any anomalies

CP violation
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No heavy flavour CP  violation anomalies?
● But there is still plenty of scope for NP to show up in B0

s
 

oscillations
●

●

●

●

●

●

● The theoretical uncertainty is still very small compared to 
experimental uncertainty

CP violation
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CP violation in B0
s
→φφ

● Current status of LHCb B0
s
→φφ measurement

●

●

●

●

●

●

●

● No significant CP violation observed
●

●

●

LHCb : PRD 90 (2014) 5, 052011

CP violation

http://dx.doi.org/10.1103/PhysRevD.90.052011
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CP violation in B0
s
→φφ

● Current status of LHCb B0
s
→φφ measurement

●

●

●

●

●

●

●

● LHCb upgrade will bring precision on this down to 0.02
● Same level as the current theoretical uncertainty

LHCb upgrade?

LHCb : PRD 90 (2014) 5, 052011

CP violation

http://dx.doi.org/10.1103/PhysRevD.90.052011
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Interpretations
● To understand the different anomalies, different 
approaches have gained some traction

● There is a problem with the uncertainties
● Experimental side most like for lepton non-universality 

measurements
● Theory side more likely for electroweak penguin angular 

analysis

Introduce a leptoquark sector
● Provides straight forward explanation of lepton non-

universality

● Introduce a Z' that allows for flavour changing neutral 
currents at tree level

● Aims mainly at B→K*µ+µ- but can also explain R
K

Conclusions
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Problem with the uncertainties
● That the “NP” shows up in C9 is somewhat problematic

● Most of the Standard Model uncertainties are there as well

● Traditional fix is C
9
 → C

9
+Y(q2) to take charm loops into 

account

● From S. Jäger

Conclusions
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Leptoquarks
● Latest attempt on leptoquarks attempts to explain nearly 
all anomalies

● Assumes hierarchical coupling matrices

arXiv:1511.01900

Conclusions
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Leptoquarks
● Latest attempt on leptoquarks attempts to explain nearly 
all anomalies

● Assumes hierarchical coupling matrices

● Loop diagrams explain R
K

arXiv:1511.01900

Conclusions



Ulrik Egede14 January 2016 43/45

Z' models
● Many variations of Z' models have been proposed

● The example below tries to include the CMS H→μτ result as 
well

Conclusions
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Z' models
● Many variations of Z' models have been proposed

● The example below tries to include the CMS H→μτ result as 
well

●

● Future τ→µµµ 
measurements will
strongly constrain
this model

Conclusions
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Conclusion
● Heavy flavour physics has a rich future ahead

● Will the current anomalies turn into discoveries?

● Key is to ensure that both theoretical and systematic 
uncertainties are under control

●

● All future facilities
● LHCb upgrade, Belle-II, CMS/ATLAS, TLEP

● have their respective strengths
●

● As always the combined information is what will be able 
to reveal New Physics

Conclusions
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