BSM for LHC run II

Ben Gripaios

Cambridge

January 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Di-photon anomaly
- Composite Higgs

Other anomalies: di-bosons and B-decays

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Things that go bump in the night ...

ATLAS 13 TeV 3.2 /fb: 14 events at 750 GeV

TI AO OONE OOTE OOT

Sanity checks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

ATLAS-CONF-2015-081

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The 'S/B weighted' game is apparently no longer considered cricket.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

)

ATLAS 3.2/fb: 3.9σ local, 2.3σ global

ATLAS-CONF-2015-081

CMS-EXO-15-004

・ コット (雪) (小田) (コット 日)

What is the $\gamma\gamma$ resonance at 750 GeV?

Roberto Franceschini^a, Gian F. Giudice^a, Jernej F. Kamenik^{a,b,c}, Matthew McCullough^a, Alex Pomarol^{a,d}, Riccardo Rattazzi^e, Michele Redi^f, Francesco Riva^a, Alessandro Strumia^{a,g}, Riccardo Torre^e

^a CERN, Theory Division, Geneva, Switzerland

^b Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

^c Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

^d Dept. de Física and IFAE-BIST, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

^e Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne, Switzerland

^f INFN, Sezione di Firenze, Via G. Sansone, 1, I-50019 Sesto Fiorentino, Italy

^g Dipartimento di Fisica dell'Università di Pisa and INFN, Italy

イロト イヨト イヨト イヨト

크

<polemic>

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

NASA'S HISTORIC DISCOVERY OF METHANE ON THE RED PLANET

icy river

Ski girl dies in

A BRTT student from to death looking for her ski shalet in the dark - sfor fulling into a stort following a hor unset.

Bastoi Werd, 20, of Haiflan, West Torin, battled to drug loceald from the tay water in the French meant of Val d'Inero. Last sight own gala-

the borror and the doal within results.

</polemic>

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Qualitatively

- Big $\sigma \times BR$
- Excess in 2 bins \implies wide
- $\blacktriangleright \implies$ strong interactions?
- \implies inconsistent with 8 TeV?
- ► ×5 pdf gain for 2σ compatibility \implies gg or QQ production modes

Franceschini et al. et al., 1512.04933

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Franceschini et al. et al., 1512.04933

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Couplings from EW invariants:

$$\frac{g_3^2}{\Lambda_3} \eta G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{g_2^2}{\Lambda_2} \eta W^{\mu\nu} \tilde{W}_{\mu\nu} + \frac{g_1^2}{\Lambda_1} \eta B^{\mu\nu} \tilde{B}_{\mu\nu}$$

BB:
$$\frac{\Gamma(S \to Z\gamma)}{\Gamma(S \to \gamma\gamma)} = 2 \tan^2 \theta_{\rm W} \approx 0.6, \qquad \frac{\Gamma(S \to ZZ)}{\Gamma(S \to \gamma\gamma)} = \tan^4 \theta_{\rm W} \approx 0.08.$$

$$\frac{\Gamma(S \to WW)}{\Gamma(S \to \gamma\gamma)} = \frac{2}{\sin^4 \theta_{\rm W}} \approx 40,$$
$$\frac{\Gamma(S \to ZZ)}{\Gamma(S \to \gamma\gamma)} = \frac{1}{\tan^4 \theta_{\rm W}} \approx 12, \qquad \frac{\Gamma(S \to Z\gamma)}{\Gamma(S \to \gamma\gamma)} = \frac{2}{\tan^2 \theta_{\rm W}} \approx 7.$$

Franceschini et al. et al., 1512.04933

Composite Higgs overview

Composite Higgs \equiv modern incarnation of natural EWSB via strong dynamics.

Why not EWSB via weak dynamics, i.e. SUSY?

Why haven't we seen any superpartners?

generic SUSY theory predicts > O(10²) superpartners

(ロ) (同) (三) (三) (三) (○) (○)

- sprinkled around the weak scale ~ 100 GeV
- cf. bounds ~ TeV
- Avoid this by: reintroducing a tuning. Ugh!
- Or by tuning in theory space. Ugh!

n.b. 'Natural' SUSY \equiv Unnatural SUSY!

So, what about strong EWSB?

A solution to the hierarchy problem that is literally natural.

To see this, consider the SM minus the Higgs

To see this, consider the SM minus the Higgs

- QCD coupling still runs much the same way
- confines at GeV
- SU(2)_L × SU(2)_R chiral symmetries of quarks get broken to SU(2)_V

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\blacktriangleright \implies SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$$

To see this, consider the SM minus the Higgs

- W^{\pm}, Z^0 bosons get masses by eating π^{\pm}, π^0
- Even m_W/m_Z comes out right!

•
$$f_{\pi} \sim 100 MeV \implies m_W \sim 30 MeV$$
 comes out wrong!

The seed of a beautiful (but wrong) idea ... technicolour

The seed of a beautiful (but wrong) idea ... technicolour

- Assume there is another strong force
- But that it confines at 100 GeV

But technicolour is killed by a treble whammy:

- Flavour physics
- Electroweak precision tests
- It predicts no Higgs!

Flavour physics problems

Natural hierarchy $\implies d[\mathscr{O}] \gtrsim 4$

Two ways to get fermion masses:

Bi-linear:

$$\mathscr{L} = yf_L \mathscr{O}_H f_R, \ \mathscr{O}_H \sim (1,2)_{\frac{1}{2}}$$

Linear:

$$\mathscr{L} = y_L f_L \mathscr{O}_R + y_R f_R \mathscr{O}_L + m \mathscr{O}_L \mathscr{O}_H \mathscr{O}_R, \quad \mathscr{O}_R \sim (3,2)_{\frac{1}{6}}$$

D. B. Kaplan, 1991

Bi-linear fermion masses

$$\mathscr{L} = \frac{f_L \mathscr{O}_H f_R}{\Lambda_F^{d-1}} + \frac{f_L f_R f_L f_R}{\Lambda_F^2}$$

$$FCNC \implies \Lambda_F \gtrsim 10^{3-4} TeV \implies d \lesssim 1.2 - 1.3$$

▶ TC: *d* ~ 3

- ▶ WTC: *d* ~ 2
- SM: $d \sim 1$ (but then $d[\mathscr{O}_H^{\dagger} \mathscr{O}_H] \sim 2$)

Strassler, 0309122

Luty & Okui, 0409274

Rattazzi, Rychkov & Vichi, 0807.0004

Rychkov & Vichi, 0905.2211

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linear fermion masses

 $\mathscr{L} = y_L f_L \mathscr{O}_R + y_R f_R \mathscr{O}_L + m \mathscr{O}_{L,R} \mathscr{O}_H \mathscr{O}_{L,R}$

- $\mathcal{O}_{L,R}$ can be relevant
- Flavour can be decoupled
- RS-GIM

Gherghetta & Pomarol, 0003129

Huber & Shafi, 0010195

Agashe, Perez & Soni, 0406101

Agashe, Perez & Soni, 0408134

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Agashe, Contino & Pomarol, 0412089

'Flavour can be decoupled' \neq 'Flavour is decoupled' To settle this needs knowledge of strong dynamics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

EWPT problems

Contributions to EWPT $\sim \frac{m_W^2}{m_\rho^2}$ are too large in technicolour.

EWPT problems

Strongest constraints from

▶ T (a.k.a.
$$m_W/m_Z) \implies m_\rho \gtrsim$$
 10 TeV

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

•
$$\Gamma(Z
ightarrow b\overline{b}) \implies m_{
ho} \gtrsim$$
 couple TeV

•
$$S \implies m_{
ho} \gtrsim$$
 couple TeV
EWPT problems

• *T* is fine: custodial symmetry $\frac{SU(2)_L \times SU(2)_R}{SU(2)_V} = \frac{SO(4)}{SO(3)}$

Sikivie, Susskind, Voloshin & Zakharov, 1980

• $\Gamma(Z \rightarrow b\overline{b})$ can also be protected by a symmetry

Agashe, Contino, Da Rold & Pomarol, 0605341

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But there is no (unbroken) symmetry for S!

EWPT problems

There is a broken symmetry for S: $SU(2)_L$

Inami, Lim & Yamada, 1992

- v is a 2, S is a 3 $\implies S \sim v^2/\Lambda^2$
- $v \ll \Lambda$?
- Try $SO(4)/SO(3) \rightarrow SO(5)/SO(4)$

Georgi, Kaplan, others, 1980s

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Agashe, Contino & Pomarol, 0412089

- NGBs a 4 of SO(4), viz. H
- SO(5) is not exact \implies potential for H
- Gauging stabilizes origin; fermions destabilize it.
- Small tuning between the two \implies small v/Λ

This is still a O(20%) tuning!

Recap: 'The Minimal Composite Higgs Model'

```
Agashe, Contino & Pomarol, 0412089
```

(ロ) (同) (三) (三) (三) (○) (○)

- Assume new strong sector with global symmetry SO(5)
- broken to subgroup SO(4) by strong dynamics at TeV scale
- Fermion masses arise by partial compositeness
- Weak gauging of $SU(2)_L \times U(1)_Y \subset SO(4)$
- EWPT satisfied by a combination of symmetries and a small tuning

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

SO(5)/SO(4) is not so mysterious. It is S^4 . Similarly, $SO(n)/SO(n-1) \simeq S^{n-1}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ ▲ 臣 ▶ 臣 • • ○ <>

)

The Minimal Composite Higgs Model @ LHC

Light d. o. f.: SM Higgs

Expect small deviations from SM couplings

Giudice, Grojean, Pomarol & Rattazzi,0703164

Falkowski, 0711.0828

Low, Rattazzi & Vichi, 0907.5413

Best to look for light (top) partners?

Contino & Servant, 0801.1679

de Simone & al., 1211.5663

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

BMG, Muller, Parker & Sutherland, 1406.5957

Beyond The Minimal Composite Higgs Model?

BMG, A. Pomarol, F. Riva, J. Serra, 0902.1483

Why go beyond?

Nature doesn't always choose minimal option

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► *SO*(*n*) is hard to get as a global symmetry.
- SU(n) is much easier.

Any G/H with $SO(5) \subset G$ and $SO(4) \subset H$ seems it will do \implies extended Higgs sector

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

But extra states that transform under SO(4) will contribute to T if they get a vev.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

G/H = SO(n)/SO(n-1) yields SM Higgs + n-5 EW singlets.

SO(6)/SO(5) is unique because $SO(6) \simeq SU(4)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Focus on SO(6)/SO(5):

BMG, A. Pomarol, F. Riva, J. Serra, 0902.1483

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A single Higgs doublet plus a singlet!
- Singlet mass is roughly $m_{\eta} = \frac{f}{v} m_h \gtrsim 600 GeV$!

Another key feature of PC models: Colour

BMG, arXiv:0910.1789

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► PC ⇒ every SM state has a strong sector partner
- \implies The strong sector is charged under SU(3) colour
- $\implies \eta$ couples to everything, including *gg*
- (not such a surprise: so does H)
- couplings to fermions scale like Higgs Yukawas
- Plausible explanation of di-photon anomaly

Run 2 agenda

- Confirm excess
- Look for couplings to Zγ, ZZ and SU(2) × U(1) consistency
- Look for couplings to everything else (fermions)
- Look for all the other strong sector resonances (TeV ...)

(ロ) (同) (三) (三) (三) (○) (○)

What about the other anomalies?

Di-boson anomaly

ATLAS

- seeks 2, 2-prong fat jets with m_j ∈ [69.4,95.4] (a 'W') or ∈ [79.8,105.8] (a 'Z')
- finds bumps at 2 TeV in 'WW', 'WZ', & 'ZZ' of 2.6, 3.4, & 2.9 σ bzw.

ATLAS, 1506.00962

э

ヘロト ヘポト ヘヨト ヘヨト

More questions than answers ...

m_j ∈ [69.4,95.4] (a ' W') or ∈ [79.8,105.8] (a ' Z') ⇒ signals overlap

(ロ) (同) (三) (三) (三) (○) (○)

- How many events are common?
- What is the true local/global significance?
- Are these (likely) Ws or Zs?

▶ ...

Start by trying to answer some of these qq ...

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

... by a poor man's (i.e. theorist's) likelihood analysis.

Allanach, BMG & Sutherland, 1507.01638 cf. Brehmer & al., 1507.00013 cf. Fichet & von Gersdorff, 1508.04814

1. In an ancillary file far, far away, we are told the numbers in the 'WW+ZZ' and 'WW+WZ+ZZ' regions

・ロト ・母ト ・ヨト ・ヨー うへで

$$WW = A + B + C,$$

$$ZZ = C + E + F,$$

$$WZ = B + C + D + E,$$

$$WW + ZZ = A + B + C + E + F,$$

$$WW + WZ + ZZ = A + B + C + D + E + F.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Even a theorist can't solve 5 eqns in 6 unknowns! For the 3 bins around 2 TeV:

	A	B	C	D	E	F
$n_i^{\mathrm{obs},1}$	2	6	5	0	4	0
$n_i^{\mathrm{obs},2}$	1	7	5	0	3	1
$n_i^{\mathrm{obs},3}$	0	8	5	0	2	2
μ_i^{SM}	2.09	2.72	1.00	2.43	0.46	0.34

2. Read off probabilities (from ATLAS model simulation) for bosons from a 2 TeV resonance to fall in the signal regions:

W jet	tag or	nly W	and Z	Z jet ta	ag Z j	et tag	only	
W 0.25		0.36				0.04		
true Z 0.11		0.39				0.21		
M_{ji}		B	C	D	E	F		
WW	0.063	0.182	0.132	0.018	0.025	0.001		
e WZ	0.028	0.139	0.143	0.057	0.090	0.007		
e ZZ	0.012	0.087	0.155	0.047	0.165	0.044		
	$\frac{W \text{ jet}}{0}$ $\frac{W_{ji}}{WW}$ WW WZ WZ WZ	W jet tag or 0.25 0.11 M_{ji} A $e WW$ 0.063 $e WZ$ 0.028 $e ZZ$ 0.012	W jet tag only W 0.25 0.11 M_{ji} A B WW 0.063 0.182 WZ 0.028 0.12 0.012	W jet tag only W and Z 0.25 0.3 0.11 0.3 M_{ji} A B C WW 0.063 0.182 0.132 WZ 0.028 0.139 0.143 e ZZ 0.012 0.087 0.155	W jet tag only W and Z jet ta 0.25 0.36 0.11 0.39 M_{ji} A B C D e WW 0.063 0.182 0.132 0.018 e WZ 0.028 0.139 0.143 0.057 e ZZ 0.012 0.087 0.155 0.047	W jet tag only W and Z jet tag Z j 0.25 0.36 0.11 0.39 M_{ji} A B C D E WW 0.063 0.182 0.132 0.018 0.025 e WZ 0.028 0.139 0.143 0.057 0.090 e ZZ 0.012 0.087 0.155 0.047 0.165	W jet tag only W and Z jet tag Z jet tag 0.25 0.36 0.04 0.11 0.39 0.21 M_{ji} A B C D E F e WW 0.063 0.182 0.132 0.018 0.025 0.001 e WZ 0.028 0.139 0.143 0.057 0.090 0.007 e ZZ 0.012 0.087 0.155 0.047 0.165 0.044	

3. Use ATLAS' reported efficiencies, branching ratios, etc, to compute a final Poisson likelihood:

$$p(\{n_{i}^{\text{obs},\alpha}\}|s_{WW}, s_{WZ}, s_{ZZ}) = \sum_{\alpha=1}^{3} \frac{\exp\left[-\sum_{i \in \{A,B,C,D,E,F\}} \left(\mu_{i}^{SM} + \epsilon \sum_{j=1}^{3} b_{i}s_{j}M_{ji}\right)\right]}{\prod_{i \in \{A,B,C,D,E,F\}} n_{i}^{\text{obs},\alpha}!} \prod_{i \in \{A,B,C,D,E,F\}} \left(\mu_{i}^{SM} + \epsilon \sum_{j=1}^{3} b_{i}s_{j}M_{ji}\right)^{n_{i}^{\text{obs},\alpha}},$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Likelihood results:

- In terms of $\sigma \times BR$ of WW, WZ, and ZZ components
- Best fit at 5.2, 0, 5.8 fb, bzw.
- But pretty flat!

Likelihood results II:

- SM has p-value of 6×10^{-4} (4 σ)
- Likelihood with one channel forced to vanish ($\Delta \chi^2 < 1$)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

More questions than answers ...

- ► How many events are common? 13/17, 15/17, 9/17.
- ► What is the combined local significance? 4σ (3.4 < 4 < 5.2)</p>
- Are these (likely) Ws or Zs? Likely equal WW and ZZ with no WZ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

2 likely models: EFTs of an $SU(2)_L$ or an $SU(2)_R$ triplet vector boson

Allanach, BMG & Sutherland, 1507.01638

Can either explain the anomaly without conflict with other searches?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

e.g.
$$SU(2)_L$$
 triplet.

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}\rho^a_{\mu\nu}\rho^{a\mu\nu} + (\frac{1}{2}m^2_\rho + \frac{1}{4}g^2_m H^{\dagger}H)\rho^a_{\mu}\rho^{a\mu}$$

$$-2g\epsilon^{abc}\partial_{[\mu}\rho^a_{\nu]}W^{b\mu}\rho^{c\nu} - g\epsilon^{abc}\partial_{[\mu}W^a_{\nu]}\rho^{b\mu}\rho^{c\nu}$$

$$+ (\frac{1}{2}ig_\rho\rho^a_\mu H^{\dagger}\sigma^a D^{\mu}H + \text{h.c.}) + g_q\rho^a_\mu \overline{Q_L}\gamma^{\mu}\sigma^a Q_L$$

Callan, Coleman, Wess & Zumino

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
e.g.
$$SU(2)_L$$
 triplet.

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}\rho^a_{\mu\nu}\rho^{a\mu\nu} + (\frac{1}{2}m^2_\rho + \frac{1}{4}g^2_m H^{\dagger}H)\rho^a_{\mu}\rho^{a\mu}$$

$$-2g\epsilon^{abc}\partial_{[\mu}\rho^a_{\nu]}W^{b\mu}\rho^{c\nu} - g\epsilon^{abc}\partial_{[\mu}W^a_{\nu]}\rho^{b\mu}\rho^{c\nu}$$

$$+(\underbrace{ig\rho}^a_{\mu}H^{\dagger}\sigma^a D^{\mu}H + \text{h.c.})\underbrace{gq}^a_{\mu}\overline{Q_L}\gamma^{\mu}\sigma^a Q_L$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Callan, Coleman, Wess & Zumino

ATLAS, 1409.6190 CMS, 1506.01443 CMS, 1405.1994 CMS, 1501.04198 Pomarol & Riva, 1308.2803

 Can this be described by a composite Higgs model?

- Yes!
- ▶ recall: *PC* ⇒ every SM state has a strong sector partner
- In fact CH with custodial symmetry features both L- and R- triplet partners
- Either will do!

Thamm & al., 1506.08688

Low & al., 1507.07557

Niehoff & al., 1508.00569

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• PC \implies region with small g_q

First ATLAS 13 TeV results (3.2/fb)!

Fit *W*' with m = 2 TeV, $\sigma \times BR = 7.6$ fb:

Run 2 prospects

No hint in other channels

Ilqq: ATLAS-CONF-2015-071

Ivqq: ATLAS-CONF-2015-075

I(v)I(v)bb ATLAS-CONF-2015-074

《曰》 《聞》 《臣》 《臣》 三臣 …

CMS similar

CMS-EXO-15-002

- not inconsistent
- if it is CH, look for other couplings implied by PC
- other resonances close by (esp. top partners)

B-physics anomalies

Anomalies in B decays I: $B \rightarrow K^* \mu \mu$

2013: LHCb measures anomalies in angular observables in $B \rightarrow K^* \mu \mu$ decays with 1fb⁻¹ LHCb, 1308.1707, particularly in an optimized observable called $P_5'(\sim 3.7\sigma)$

2015: Confirmed with full 3fb⁻¹ data from Run I LHCb-CONF-2015-002

Anomalies in B decays: R_K and branching ratios

2014: 2.6 σ anomaly seen in observable R_K : LHCb, 1406.6482

$$R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$$

Uncertainties cancel in theory prediction of R_{K} : $R_{K}^{SM} = 1.0003 \pm 0.0001$ Bobeth & al. 0709.4174

Also tensions in some other $b
ightarrow s \mu \mu$ observables, eg.: straub,

Decay	obs.	q ² bin	SM pred.	measurem	ent	pull
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	F_L	[2, 4.3]	0.81 ± 0.02	0.26 ± 0.19	ATLAS	+2.9
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	F_L	[4, 6]	0.74 ± 0.04	0.61 ± 0.06	LHCb	+1.9
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	S_5	[4, 6]	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	P_5'	[1.1,6]	-0.44 ± 0.08	-0.05 ± 0.11	LHCb	-2.9
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	P'_5	[4, 6]	-0.77 ± 0.06	-0.30 ± 0.16	LHCb	-2.8
${\rm B}^- \to {\rm K}^{*-} \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[4, 6]	0.54 ± 0.08	0.26 ± 0.10	LHCb	+2.1
$\bar{B}^0\to \bar{K}^0\mu^+\mu^-$	$10^8 \frac{dBR}{dq^2}$	[0.1,2]	2.71 ± 0.50	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^0\to \bar{K}^0\mu^+\mu^-$	$10^8 \frac{dBR}{dq^2}$	[16, 23]	0.93 ± 0.12	0.37 ± 0.22	CDF	+2.2
$B_s \to \phi \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[1,6]	0.48 ± 0.06	0.23 ± 0.05	LHCb	+3.1

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Model-independent NP interpretation

Effective hamiltonian for $b \to s\ell\ell$ transitions $\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} (V_{ts}^* V_{tb}) \sum_i C_i^{\ell} \mathscr{O}_i^{\ell}$ where $((\ell = e, \mu, \tau)), \mathscr{O}_i^{\ell}$ are:

$$\begin{aligned} \mathcal{O}_{7}^{(\prime)} &= & \mathsf{DIPOLE} \\ \mathcal{O}_{9}^{\ell(\prime)} &= \frac{\alpha_{\mathrm{em}}}{4\pi} \left(\bar{s} \gamma_{\alpha} P_{L(R)} b \right) (\bar{\ell} \gamma^{\alpha} \ell) & \mathsf{VECTOR} \\ \mathcal{O}_{10}^{\ell(\prime)} &= & \mathsf{AXIAL VECTOR} \end{aligned}$$

Data are best fit by: e.g. Altmannshofer & Straub 1411.3161, Straub Moriond

2015, Matias Moriond 2015

- ► Negative contribution to C_9^{μ} : $C_9^{NP,\mu} \in [-1.65, -0.95]$ (A bit silly, since only $C_9^{NP} = \mp C_{10}^{NP}$ are plausible.)
- Contributions of opposite sign to C_9^{μ} and C_{10}^{μ} : $C_9^{NP,\mu} = -C_{10}^{NP,\mu} \in [-0.74, -0.29]$

(日) (日) (日) (日) (日) (日) (日)

Leptoquark-mediated $b \rightarrow s \mu \mu$

A leptoquark Π with SM quantum numbers $(\overline{\mathbf{3}}, \mathbf{3}, \frac{1}{3})$ can mediate the process $b \rightarrow s\ell\ell$ Hiller & Schmaltz, 1408.1627

Couplings to s, b, and μ suggested to explain anomalies, with

$$rac{|\lambda_{\mu b}^* \lambda_{\mu s}|}{M^2} pprox rac{1}{(48 {
m TeV})^2}$$

Generates $C_9^{NP,\mu} = -C_{10}^{NP,\mu} pprox -0.5$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

What have leptoquarks got to do with the composite Higgs?

Another key feature of PC models: Colour

BMG, arXiv:0910.1789

(ロ) (同) (三) (三) (三) (○) (○)

- PC ⇒ every SM state has a heavy partner
- \implies The strong sector is charged under SU(3) colour
- ► ⇒ the strong sector contains coloured, EW-charged fermions
- ► ⇒ ? the strong sector contains coloured, EW-charged scalars
- Leptoquarks coupled mostly to 3rd generation quarks and leptons.
- If chiral, consistent with all pre-LHC flavour constraints!

Leptoquarks in CH models

- Can even be light, if PNGBs
- ▶ With *G*/*H* given by

$$\frac{SO(9) \times SO(5)}{SU(4) \times SU(2)_{\Pi} \times SU(2)_{H} \times SU(2)_{R}}.$$
get PNGBs $H \sim (\mathbf{1}, \mathbf{2}, \frac{1}{2})$ and LQ $\Pi \sim (\overline{\mathbf{3}}, \mathbf{3}, \frac{1}{3})!$

BMG, Nardecchia, & Renner, 1412.1791

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- All other resonances of the new strong dynamics around m_p
- Leptoquark mass term comes mostly from QCD, so

$$m_{\Pi}^2 \sim rac{lpha_s}{4\pi} m_{
ho}^2 \sim \left(rac{1}{10} m_{
ho}
ight)^2$$

Partial Compositeness & LQ couplings

 $\mathscr{L} \supset \varepsilon^{q} \overline{\mathscr{O}}^{q} q + \varepsilon^{u} \overline{\mathscr{O}}^{u} u + m_{\rho} \left(\overline{\mathscr{O}}^{q} \mathscr{O}^{q} + \overline{\mathscr{O}}^{u} \mathscr{O}^{u} \right) + g_{\rho} \overline{\mathscr{O}}^{q} H \mathscr{O}^{u}.$

 \implies Yukawa couplings

$$(Y_u)_{ij} \sim g_\rho \varepsilon_i^q \varepsilon_j^u, \qquad (Y_d)_{ij} \sim g_\rho \varepsilon_i^q \varepsilon_j^d.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Partial Compositeness & LQ couplings II

10 params. in quark Yukawa sector: $g_{\rho}, \varepsilon_i^q, \varepsilon_i^u, \varepsilon_j^d$. Choose $\varepsilon_i^q, \varepsilon_i^u$, and ε_i^d to reproduce quark masses and CKM:

$$\begin{array}{ll} g_{\rho} v \varepsilon_{i}^{q} \varepsilon_{i}^{u} \sim m_{i}^{u}, & g_{\rho} v \varepsilon_{i}^{q} \varepsilon_{i}^{d} \sim m_{i}^{d} \\ \frac{\varepsilon_{1}^{q}}{\varepsilon_{2}^{q}} \sim \lambda, & \frac{\varepsilon_{2}^{q}}{\varepsilon_{3}^{q}} \sim \lambda^{2}, & \frac{\varepsilon_{1}^{q}}{\varepsilon_{3}^{q}} \sim \lambda^{3}, \end{array}$$
8 relations \implies 2 leftover parameters: $\begin{array}{l} g_{\rho} \text{ and } \varepsilon_{3}^{q} \\ \end{array}$.
Lepton sector: more arbitrary; assume $\varepsilon_{i}^{e} \approx \varepsilon_{i}^{\ell}$ to minim

 $\mu \rightarrow e\gamma$. Fixes lepton mixings:

$$Y_i^\ell = g_
ho(arepsilon_i^\ell)^2 \implies arepsilon_i^\ell = \sqrt{rac{Y_i^\ell}{g_
ho}}$$

Also: mass of leptoquark $oldsymbol{M}$

ise

BMG, Nardecchia, & Renner, 1412.1791

Partial Compositeness & LQ couplings III

BMG, Nardecchia, & Renner, 1412.1791

The LQ couples much the same way as the Higgs

So its couplings to SM fermions are:

	$\lambda_{ij}=g_{ ho} c_{ij}arepsilon_i^\ellarepsilon_j^{m q}$						
	Quarks	λ^3	$: \lambda^2$: 1			
Leptons $\sqrt{Y_\ell}$	$\lambda_{ij}/(c_{ij}g_{\rho}^{1/2}\epsilon_3^q)$	j = 1	j = 2	j = 3			
	i = 1	1.92×10^{-5}	8.53×10^{-5} 1.24 × 10^{-3}	1.67×10^{-3}			
	$i \equiv 2$ i = 3	2.80×10^{-3} 1.16×10^{-3}	1.24×10^{-3} 5.16×10^{-3}	2.43×10^{-1}			

 c_{ij} are unknown O(1) coefficients \implies predictions of the model

Fit to $b \rightarrow s\ell\ell$ anomalies

BMG, Nardecchia, & Renner, 1412.1791

$$C_{9}^{NP\mu} = -C_{10}^{NP\mu} \in [-0.74, -0.36] \quad (\text{at } 1\sigma)$$
$$\Rightarrow \operatorname{Re}(c_{22}^{*}c_{23}) \in [1.50, 3.08] \left(\frac{4\pi}{g_{\rho}}\right) \left(\frac{1}{\varepsilon_{3}^{q}}\right)^{2} \left(\frac{M}{\operatorname{TeV}}\right)^{2} \quad (\text{at } 1\sigma)$$

So since the c_{ij} should be O(1):

- $\varepsilon_3^q \sim 1$ (i.e maximal)
- $g_{
 ho} \sim 4\pi$ (i.e maximal)
- \implies $M \sim$ 1 TeV (i.e. in LHC reach!)

n.b. R_{K} : Automatically accommodated with PC: contributions to decay $B^{+} \rightarrow K^{+}e^{+}e^{-}$ are negligible.

We now have no free parameters, and 1000s of flavour constraints to satisfy (at O(1))! All are (just about) ok. $\mu \rightarrow e\gamma$ most challenging (\implies heavy resonances).

(ロ) (同) (三) (三) (三) (○) (○)

Summary

- Composite Higgs literal naturalness
- Di-photon anomaly $\eta \in SO(6)/SO(5)$?
- Di-boson anomaly $-SU(2)_L \times SU(2)_R$ partners?
- B-physics anomalies leptoquarks from partial compositeness?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Highly unlikely that all 3 persist
- Just 1 would be nice!