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Outline 
•  What I will cover: 

•  Recap the goals of the LHC 
•  Look at how the LHC experiments are designed 
•  Summarise what was achieved in Run 1 
•  Describe the upgrades done in the shutdown between Run 1 & 2 
•  Summarise some of the Physics prospects for Run 2 
•  Look at some early hints from Run 2 

•  What I will not cover: 
•  Details of any given Physics topic 

•  In the next days you will have 2 hours dedicated to individual topics, 
with a detailed look at the theory and experiment behind each topic 

•  This talk is an overview of many topics so touches on them briefly 
•  Final caveat:  

•  I’m on ATLAS so may use it to describe things more often than CMS simply because I’m more familiar with it 
– there is no intended bias 
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The Large Hadron Collider 

p p 

• Collisions of proton bunches travelling at high energy  
• Superconducting dipole magnetic field 8.3 Tesla 
• 2808 bunches, 1011 particles in each 

• 99.9999991% x speed of light, 11000 revolutions per second 
• Interactions between beams every 25 nanoseconds 
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Two particles collide at very high energy 
 
 

Particle Collisions 

? 

  New particles are produced which we detect and study 
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Why? 
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Understanding the Universe 

Older ….. larger … colder ….less energetic 

now Big Bang 
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How do we do it? 

•  To probe the conditions of the early universe we 
smash particles together 

J. Ellis 
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The Energy Frontier 

•  Size of structure we can probe with a collider like 
LHC 

   =  h / p  (de Broglie, 1924) 
     

 h = Planck’s constant = 6.63 x 10-34 Js 
 p = momentum of protons 

•  The larger the momentum (energy), the smaller 
the size probed 

•  AND E=mc2 
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Run 1 to Run 2 Energy Increase 
•  Linear relation between energy of collision and mass 

of particles that can be produced 

•  But the extra luminosity is not shared equally among 
parton-pair interactions, so the reach depends on 
production  

    mechanism 
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Integrated lumi comparison 
•  (From G. Salam talk) 
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Goals of the LHC 

•  Understanding the generation of mass 

•  Understanding origin of CP violation 
•  In quantities large enough to explain CP asymmetry of universe 

•  Searching for new phenomena to rule in or out new 
theories 

•  Searching for whatever is out there 

•  Joining up our understanding of the very large 
(galaxies) with the very small: what is dark matter? 
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Probe the Standard Model and look for processes beyond it 

• Strong, weak and Electromagnetic  
 forces 
• Describes interaction of matter  
particles by the means of  
force carrier particles 
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Probe the Standard Model and look for processes beyond it 

• Strong, weak and Electromagnetic  
 forces 
• Describes interaction of matter  
particles by the means of  
force carrier particles 
 

Greeks 
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Goals of the LHC 
•  How do we, as experimentalists, go about achieving 

those goals? 
•  How far did we get in Run 1? 
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LHC Experiments 
•  To achieve LHC goals, there are two approaches, 

built using the same detector principles 
•  General purpose detectors (ATLAS and CMS) 

 
•  Dedicated experiments for flavour physics (LHCb) and Heavy 

Ion (ALICE) – I will not cover ALICE detector or Physics 
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ATLAS Detector 
“Onion shell” structure enables reconstruction of particles 

Use this capability to reconstruct particle interactions of  
special interest 
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ATLAS Tracker 
•  Silicon strips and pixels (~62m2 of silicon) 

•  In 2 Tesla field 
•  High granularity and resolution for charged particle trajectories 

•  Transition Radiation Tracker 
•  Continuous tracking of charged particles – Xe-filled tubes 
•  Less material  
    than silicon tracking 
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The ATLAS experiment 
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The ATLAS experiment 
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ATLAS Calorimeters 
•  Liquid Argon calorimeter 

•  Barrel Electromagnetic calorimeter and end-cap of Hadronic 
calorimeter 

•  Fast response time, fine “granularity” 

•  Tile 
•  Barrel of Hadronic Calorimeter 

•  Outside B-field 
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ATLAS Muon Chambers 
•  ATLAS=A ToroidaL ApparatuS 
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ATLAS Muon Chambers 

• Independent muon spectrometer 
• Standalone capabilities 
• Monitored Drift Tube chambers measure momentum 
and position of muons  
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The ATLAS Experiment 
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ATLAS Trigger 
•  Three distinct levels during Run 1 
•  Reduce rate from bunch crossing ~40 MHz to output 

rate of order 1 kHz 
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CMS Detector 
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CMS Tracker 
•  200m2 of silicon detector 
•  4 Tesla magnetic field 
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ATLAS/CMS Comparison 
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From K. Jakobs 
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CMS Calorimeters 
•  Electromagnetic calorimeter and part of hadronic 

calorimeter are inside the solenoid coil and form its 
return yoke 
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CMS Muon Chambers 
•  Excellent momentum resolution combined with 

tracking detector in central region 
•  Less good standalone, making muon triggering a bit more 

challenging e.g. unprescaled thresholds 
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ATLAS/CMS muon chambers 

30 



Sinead Farrington, University of Warwick 

CMS Trigger 
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LHCb Detector 
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LHCb Tracker 
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LHCb Particle Identification 
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From B. Storaci 
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LHCb Calorimeter, Muon Chambers 

35 From B. Storaci 
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LHCb Trigger 
•  In Run 1:  
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Run 1 Dataset 
•  7/8 TeV centre of mass collisions 
•  Instantaneous luminosity: 

•  ATLAS/CMS: ~7x1033cm-2s-1, event pile-up ~ 20.7 

•  LHCb luminosity levelling: ~4x1032 cm-2s-1, event pile-up ~ 1.7 
events 

•  Much harder to resolve vertex structure of b decays with pile-up  
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Run 1 Dataset 
•  7/8 TeV centre of mass collisions 
•  Integrated luminosity: 

•  ATLAS/CMS: ~4fb-1 at 7 TeV, 20 fb-1 at 8 TeV 
•  LHCb:~1fb-1 at 7 TeV, ~2fb-1 at 8 TeV 
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Run 1 Analysis Highlights 
•  Impossible to summarise Run 1 in a couple of slides 

•  But I’m going to try… 
•  Selecting highlights 

•  Lumping ATLAS and CMS together 
•  In general they search for and measure the same physics 

(though not always) 
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Run 1 Dataset 
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•  Copious production of SM particles and the Higgs 
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Run 1 Achievements: ATLAS/CMS 
•  Standard Model 

•  Large range of results 
•  Some (re)establish e.g.  
    boson production and  
    give momentum  
    distributions to pin down 
    Monte Carlo tunings 

 
•  Some are first observations of new phenomena (or are stronger 

than previous signals at Tevatron thus allowing probing of their 
kinematics) 
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Run 1 Achievements: ATLAS/CMS 
•  Supersymmetry Searches 

•  CMS summary of limits and final states 
•  Prolific searches and honing of techniques but no evidence (yet) 
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Higgs Boson 
•  Introduced to give mass to W and Z bosons 

•  Requires a new potential to be added to the Standard Model 
•  Introduction of “complex doublet” implies 4 new degrees of 

freedom, 3 of which are the W+, W- Z boson mass 
•  Fourth is the Higgs boson itself 
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Massless  
bosons 

Spontaneous  
symmetry  
breaking 
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Higgs Decaying to Bosons 
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ATLAS 

CMS 

5.2(4.6) 8.1(6.2) 6.5(5.9) 

5.6(5.3) 6.5(6.3) 4.7(5.4) 

•  Observation in γγ     ZZ*            WW* 

EPJC 74(2014) 3076, PRD 92 012006(2015),PRD 91 012006(2015), PRD 90 112015(2014), JHEP 01 (2014) 096, PRD 89 (2014) 092007      
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Higgs Decaying to Fermions 
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•  Tau leptons 

	



	

 	

 	

σ Observed (Expected) 
   4.5 (3.4) 	

    3.2 (3.7)   
    

JHEP 05 (2014) 104  JHEP 04 (2015) 117 
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Higgs Decaying to Fermions 
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•  b quarks 

	



	

 	

 	

σ Observed (Expected) 
  1.8 (2.8) 	

 	

2.6 (2.7) 	

 	

2.2(1.4)
	

 	

 

JHEP01(2015)069 arXiv:1506.01010 PRD 88, 052014 (2013) 
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Run 1 Achievements: LHCb 
•  Probed rare decays and found some interesting 

discrepancies 

•  Observed B to mumu 
    (BR ~10-9) 
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Run 1 Achievements: LHCb 
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Upgrades for Run 2 
•  Long Shutdown 1: 14th Feb 2013 – 23rd March 2015 
•  LHC work: 10,000 high-current splices between LHC 

magnets opened and consolidated 

 
•  Experiments also installed new detectors and 

performed maintenance during this time 
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LHC in the Shutdown 
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From M. Lamont 
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ATLAS in the shutdown 
•  4th silicon pixel detector layer (IBL) 

•   Innermost Pixel detector layer at R=3.3 cm from beam 
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IBL silicon layer 
•  Improved tracking performance (impact parameter 

resolution) 

•  Extra material demands a new geometry for ATLAS: 
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ATLAS in the shutdown 
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• Trigger improvements 
• New Topological L1 trigger, new central trigger 
processor, coincidence between Tile and muons, merge 
of high-level trigger, new Fast TracK Trigger (FTK), 
improved L1 calorimeter trigger 
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ATLAS in the Shutdown 
•  Infrastructure: 

•  New beampipe, improvements to magnet & cryogenic system 

•  Detector consolidation 
•  Muon chambers completion (|η|=1.1-1.3) and repairs, improved 

readout of various systems (L1 rate 100 kHz), repair of pixel 
modules and calorimeter electronics, new pixel services, new 
luminosity detectors, new MBTS detector 

•  Software improvements to simulation, reconstruction, 
grid and analysis software 
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CMS in the shutdown 
•  Level 1 Trigger: 

•  Upgraded calorimeter trigger – better isolation and pile-up 
subtraction 

•  Added a muon chamber 
•  Run tracker colder (strips at -15 C, pixels at -10 C) 

•  Detector suffers less radiation damage at cooler temperatures 

•  HCAL new calibration strategies 
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CMS in the Shutdown 
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From W&C seminar Olsen, Malgeri  
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CMS in the Shutdown 
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From W&C seminar Olsen, Malgeri  
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CMS in the Shutdown 
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LHCb in the shutdown 
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From CERN seminar B. Storaci 
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LHCb in the Shutdown 
•  Challenging to perform calibration and alignment in 

real time, but has been successful e.g. 

60 From CERN seminar B. Storaci 
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Prospects for Run 2 
•  Expected performance in 2016: 

61 

• For a full overview of the public 
Run 2 results see the talks at the 
CERN seminars for CMS and 
ATLAS: 
https://indico.cern.ch/event/
442432/ 
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Prospects for Run 2: ATLAS and CMS 
•  Some hardware challenges  
•  ATLAS 

•  CMS 
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Slides from 
LHCC open 
session 
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A few slides 
•  Following few slides attempt to give the briefest of 

highlights of what will be discussed in the next three 
days 

•  I am sure to miss out many people’s favourite topics, so take this 
as a sketch! 
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Higgs: What precision is necessary? 
•  SM couplings can be modified by new physics 

•  Modifications can be small depending on the BSM 
scenario (Snowmass report) 

•  For new physics at the 1TeV mass scale: 

•  Higher scales imply smaller effects 
64 

arXiv:1310.8361 
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Higgs: Prospects for ATLAS and CMS 
•  Full measurement of the key properties of this new 

boson will take some time to establish 
•  The Higgs-fermion sector is relatively unknown but Run 2 will 

close in on it 

•  Key to characterising this particle are 
•  Production and decay rates (to greater precision) 

•  Original discoveries of order 10-20% uncertainties 
•  Run 2 will take us to order 5-7% uncertainties and theory 

predictions improving all the time too 
•  Probe fermion sector not only with higher statistics but with new 

mechanisms e.g. ttH, Look for Higgs to mumu 
•  Intrinsic quantum numbers 

•  Switch from search mode to precision physics 
•  Emphasis on publishing what we measure in pure form (think 

about EFT, simplified cross-section) 
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Top/Searches prospects for Run 2 
•  Top 

•  Measure cross-section and properties more accurately, 
especially single top 

•  Searches 

•  Standard Model 

66 CMS wine and cheese, Olsen and Malgeri 
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Prospects for Run 2: LHCb 
•  Will go impressively further into precision SM 

measurements 
•  Statistical uncertainties for Run 2 
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Hints from Early Run 2 
•  Diphotons 

•  See 2 σ bump around 750 GeV 
•  But two sigma effects come and go… (e.g. dijets excess was 2.5 σ 

in run 1 and has gone in run 2) 
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Final Remarks 
•  LHC continues to live up to its role as the energy 

frontier collider and deliver results that constitute 
- Precision measurements   -Powerful searches (with relatively  

                small amounts of data) 

 
 
 
 
 

•  The next couple of days here at YETI will be very 
interesting 

•  Impossible to predict which sector will yield the interesting results 
69 Thanks to Tim Gershon (LHCb) and Sam Harper (CMS) for help finding material 
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Discussion Topics 
•  What sets the scale of the detectors? 
•  Why have a dedicated flavour physics detector? 
•  Why is LHCb a forward-only detector (and why only 

one arm?)? 
•  What sets the lifetime of the detectors? 
•  What constitutes a useful measurement (from a 

theorist perspective)? 
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Matter Particles 
• We see three generations 

• Undergoing similar 
interactions 
• Mass hierarchy 
• Each has an antiparticle 
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Forces 
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• In the Standard Model, we depict (and calculate) forces as 
the exchange of a force-carrier boson, between particles 
 


