

Higgs Boson Properties With CMS Experiment

Working Package 1: Interpretation of data

Yacine Haddad (ESR 4), Supervisors: N. Glover (UDUR), G. Davies (ICL) IPPP, Durham University

October 20, 2015

Introduction

Background

- Born in Algeria, where I did half of my Education: graduated in theoretical physics (2009). Then I
 went in France for Master degree (graduated 2011) and for the PhD.
- PhD Thesis with ILC-CALICE group, École polytechnique, France Title: Highly granular semi-digital hadron calorimeter of future e^+e^- lepton collider and model independent measurement of the Higgs boson in the hadronic channel $ZH \rightarrow q\bar{q} + X$
- Achievements :
 - Development of Monte-Carlo simulation, Calibration and Characterisation for SDHCAL prototype
 - Demonstration of a model independent measurement of the Higgs boson using the recoiling jets from the Higgs-strahlung production mode.
- Outcomes:
 - $\circ~$ 4 papers as first author + active contributions to 4 other papers + co-author of 7 publications with CALICE Collaboration
 - $\circ~$ Finalisation and publication of the thesis on February 12th, 2015

Introduction

Background

- Born in Algeria, where I did half of my Education: graduated in theoretical physics (2009). Then I
 went in France for Master degree (graduated 2011) and for the PhD.
- PhD Thesis with ILC-CALICE group, École polytechnique, France Title: Highly granular semi-digital hadron calorimeter of future e^+e^- lepton collider and model independent measurement of the Higgs boson in the hadronic channel ZH $\rightarrow q\bar{q} + X$

My project focuses on the measurement of the Higgs properties with CMS experiment within Durham University and Imperial College London.

- Supervisors: Nigel Glover (IPPP Durham), Paul Dauncey / Gavin Davies (Imperial College London)
- Started 01/11/2014

The main goals are:

- Exploitation of the LHC-Run II data:
 - $\circ~$ Development & validation of the $H\to\gamma\gamma$ analysis framework
 - $\circ~\mbox{Re-discovering}$ the Higgs boson with $13~\mbox{TeV}$ data
- Studying and understanding QCD jet production, with aim of improving the Higgs boson sensitivity mainly in the Vector Boson Fusion (VBF) production mechanism (with $H \rightarrow \gamma \gamma$).
- Measurement of the Higgs Properties (Spin/CP, couplings, self-coupling, ...) with the LHC-Run II data

Project description

- Since June 2015, the LHC delivers pp collision at 13 TeV
- So far CMS recoreded about $2.2 fb^{-1}$, still increasing
- This marks a new energy frontier in particle physics

• What to do with these data ?

Project description

- Reminder: The Higgs boson was discovered in 2012 by ATLAS and CMS collaborations at LHC
- One of the main channels is the $H\to\gamma\gamma:$ clean signature, allows measurement the Higgs' properties
- The second most important Higgs boson production process at LHC is the Vector Boson Fusion (VBF)
- This production mode is characterised by
 - Very low hadronic activities in the central rapidity region
 - Two energetic quark jets with a large rapidity gap (from the scattered quarks)
- The good reconstruction of jets is important to increase the sensitivity of the H → γγ analysis → It is important to reduce the pile-up contribution (next slide) to the jets and determine the jet's properties (identifying if the jets is either from quark or gluon)

Project description

properties (identifying if the jets is either from quark or gluon)

• Pile-up constitutes one of the main challenge for the analyses at the LHC

- The goal: reconstruct jets coming from the primary vertex where the hardest pp collision happened
- How might we do this ?
 - Remove the jets which are more likely composed by the tracks from pile-up
 - Track based variables. ex: β^* : ratio of the energy carried by charged track from another primary vertex in the jet over the energy of the all the track in jet
 - Shape based variable. ex: $\langle \Delta R^2 \rangle = \sum \Delta R^2 p_t / \sum p_t$

Preparation for Run II

pile-up mitigation and Jet identification

- Pile-up constitutes one of the main challenge for the analyses at the LHC
- The goal: reconstruct jets coming from the primary vertex where the hardest pp collision happened
- How might we do this ?
 - Remove the jets which are more likely composed by the tracks from pile-up
 - Track based variables. ex: β^* : ratio of the energy carried by charged track from another primary vertex in the jet over the energy of the all the track in jet
 - Shape based variable. ex: $\langle \Delta R^2
 angle = \sum \Delta R^2 p_t / \sum p_t$

- Pile-up constitutes one of the main challenge for the analyses at the LHC
- The goal: reconstruct jets coming from the primary vertex where the hardest pp collision happened
- How might we do this ?
 - $\circ\,$ Remove the jets which are more likely composed by the tracks from pile-up
 - Track based variables. ex: β^* : ratio of the energy carried by charged track from another primary vertex in the jet over the energy of the all the track in jet
 - Shape based variable. ex: $\langle \Delta R^2 \rangle = \sum \Delta R^2 p_t / \sum p_t$
 - $\circ\,$ Remove the charged hadron tracks before jet clustering: Charged hadron subtraction (CHS)
 - · Identify and remove all the tracks attached to pile-up vertices

• Unfortunately those developments and results are not yet public !

- Pile-up constitutes one of the main challenge for the analyses at the LHC
- The goal: reconstruct jets coming from the primary vertex where the hardest pp collision happened
- How might we do this ?
 - $\circ\,$ Remove the jets which are more likely composed by the tracks from pile-up
 - Track based variables. ex: β^* : ratio of the energy carried by charged track from another primary vertex in the jet over the energy of the all the track in jet
 - Shape based variable. ex: $\langle \Delta R^2 \rangle = \sum \Delta R^2 p_t / \sum p_t$
 - $\circ~$ Remove the charged hadron tracks before jet clustering: Charged hadron subtraction (CHS)
 - · Identify and remove all the tracks attached to pile-up vertices

• Unfortunately those developments and results are not yet public !

- Pile-up constitutes one of the main challenge for the analyses at the LHC
- The goal: reconstruct jets coming from the primary vertex where the hardest pp collision happened
- How might we do this ?
 - $\circ\,$ Remove the jets which are more likely composed by the tracks from pile-up
 - Track based variables. ex: β^* : ratio of the energy carried by charged track from another primary vertex in the jet over the energy of the all the track in jet
 - Shape based variable. ex: $\langle \Delta R^2 \rangle = \sum \Delta R^2 p_t / \sum p_t$
 - $\circ\,$ Remove the charged hadron tracks before jet clustering: Charged hadron subtraction (CHS)
 - · Identify and remove all the tracks attached to pile-up vertices

• Unfortunately those developments and results are not yet public !

Conferences:

- 12/2014: Invited talk the third French Linear collider days (Journées Collisionneur Linéaire) talk : Model independent analysis for $HZ(Z \rightarrow q\bar{q})$ at ILC250 and FCC
- 04/2015: HiggsTools, First Annual Meeting, Freiburg, Germany talk : Weak Boson Fusion Higgs boson production in CMS
- 10/2015: Higgs Coupling 2015, IPPP Durham

Training:

- 02/2015: First Young Researchers Meeting Collaborative Teamwork and Communication
- 06/2015: First HiggsTools Summer School

Secondment:

- Academic secondment at Imperial College London (Febrary to April and June)
 - $\circ~$ Worked more closely with ILC team
 - $\circ~\rightarrow$ Responsible of the Jet validation and VBF tagging in CMS $H\rightarrow\gamma\gamma$ analysis group

Taking advantage of the HiggsTools netwok:

- Within Davide Napolitano (ESR1), we organise of the HiggsTools Journal Club: A regalar opportunity for discussion and exchange beteen ESRs.
- Trainings and summer schools
- YRM this week, participating to VBF/MC/PDF session

Publication:

• CMS will validate my authorship at the end of this year (2015)

Visits to CERN:

I visited CERN 2 times for 1 week period (4/2015, 5/2015), next visit will be next week (from 26 October)

Current & Short term plans:

- Finalising the studies on the pile-up mitigation and estimate the impact on the analysis
- Implementation of Multi-Variate Analysis for tagging the ${\rm VBF}(H\to\gamma\gamma)$ signature

Mid term plans:

- Writing an analysis note summarising my work on the pile-up mitigation for $H\to\gamma\gamma$
- Important deadlines ahead:
 - Producing first (preliminary) result for Moriond 2016,
 - VBF results for summer 2016 (ICHEP 2016 ...)

Long term and Carrer plan:

- Obtain a leading position in the $H\to\gamma\gamma$ analysis (sub-convener) in CMS
- Find a future position in a University/Laboratory which matches my interests and my passion to high energy physics
- Planning to start the private secondment with Wolframe in June 2016

