IMPROVING THE UNDERSTANDING OF PDF UNCENTAINTIES

MID TERM REVIEW

Zahari Kassabov

October 20th 2015, Helmholtz Association Brussels

DFTTO

• Obtained Physics Degree (Master) from the University of Zaragoza in 2014.

- Obtained Physics Degree (Master) from the University of Zaragoza in 2014.
- Covering the ESR 13 position in the university of Turin.

- Obtained Physics Degree (Master) from the University of Zaragoza in 2014.
- Covering the ESR 13 position in the university of Turin.
- Expect to obtain a PhD on completion of HiggsTools (joint degree with the university of Milan).

Main Topic

Determination of Parton Distribution Functions

Main Topic

Determination of Parton Distribution Functions

• To first approximation, they represent the *probability* of sampling a *parton* in a given event.

• ...(but it's a little more complicated)

• PDFs are crucial as they enter in every calculation in LHC physics.

- PDFs are crucial as they enter in every calculation in LHC physics.
- Cannot be computed by theory alone. Require collaboration between theorist and experimentalists.

PDFS IN THE LHC

- PDFs are crucial as they enter in every calculation in LHC physics.
- Cannot be computed by theory alone. Require collaboration between theorist and experimentalists.
- As with all physical quantities, the uncertainty is as important as the value itself (Task 3.3).

PDFS IN THE LHC

- PDFs are crucial as they enter in every calculation in LHC physics.
- Cannot be computed by theory alone. Require collaboration between theorist and experimentalists.
- As with all physical quantities, the uncertainty is as important as the value itself (Task 3.3).
- A multidisciplinary approach is needed to determine them from theoretical predictions and experimental data.
 - High Energy Physics
 - Statistics
 - Machine Learning
 - Computer science
 - Information theory

NNPDF

We provide a PDF determination based on Neural Networks.

NNPDF

We provide a PDF determination based on Neural Networks. International collaboration, members from:

- University of Edinburgh
- University of Cambridge
- University of Oxford
- CERN

- University of Turin
- University of Milan
- University of Barcelona

NNPDF

We provide a PDF determination based on Neural Networks. International collaboration, members from:

- University of Edinburgh
- University of Cambridge
- University of Oxford

- University of Turin
- University of Milan
- University of Barcelona

• CERN

We strive to obtain a statistically consistent and unbiased result incorporating all relevant experimental data.

I have visited several NNPDF nodes.

Milan Research work and training Edinburgh Studies on PDF uncertainties Oxford General NNPDF meeting

• To be by all LHC experiments in PDF computations.

- To be by all LHC experiments in PDF computations.
- Our work gained endorsement from the larger community.

- To be by all LHC experiments in PDF computations.
- Our work gained endorsement from the larger community.
- Major impact on several milestones:
 - M3.3.2 Methods for PDF uncertainties in shower Monte Carlos
 - M3.3.3 Improved PDFs using LHC data
 - M3.3.4 Consistent PDF fits at NNLO
 - M2.1.2 Better control of theoretical uncertainties for the SM-like Higgs boson scenario
 - M1.4.1 Review of the current state and future directions in Higgs boson physics

- To be by all LHC experiments in PDF computations.
- Our work gained endorsement from the larger community.
- Major impact on several milestones:
 - M3.3.2 Methods for PDF uncertainties in shower Monte Carlos
 - M3.3.3 Improved PDFs using LHC data
 - M3.3.4 Consistent PDF fits at NNLO
 - M2.1.2 Better control of theoretical uncertainties for the SM-like Higgs boson scenario
 - M1.4.1 Review of the current state and future directions in Higgs boson physics
- Milan and UCL nodes directly involved.

• Derive methods for making PDF computations *practical*. (arxiv:1505.06736)

- Derive methods for making PDF computations *practical*. (arxiv:1505.06736)
 - Improved computational efficiency of calculations. (M3.3.2, M3.3.3)

- Derive methods for making PDF computations *practical*. (arxiv:1505.06736)
 - Improved computational efficiency of calculations. (M3.3.2, M3.3.3)
- Validate the strategy.

- Derive methods for making PDF computations *practical*. (arxiv:1505.06736)
 - Improved computational efficiency of calculations. (M3.3.2, M3.3.3)
- Validate the strategy.
 - Develop computational tools for benchmarking.

- Derive methods for making PDF computations *practical*. (arxiv:1505.06736)
 - Improved computational efficiency of calculations. (M3.3.2, M3.3.3)
- Validate the strategy.
 - Develop computational tools for benchmarking.
- Derive more advanced compression methods as a follow up.

- Attendance to conferences:
 - HiggsCouplings 2014 (Torino)
 - HiggsTools First Young Researchers Meeting (Durham)
 - PDF4LHC (CERN)
 - HiggsTools Anual Meeting (Freiburg)
 - Higgs Cross Section Working Group (CERN)

- Attendance to conferences:
- Attendance to schools
 - GGI School for Theoretical Physics (Florence)
 - HiggsTools Anual School (Pré Saint-Didier)

- Attendance to conferences:
- Attendance to schools
- Attendance to courses
 - Fundamental interactions (University of Milan)
 - Computational Physics (University of Milan)
 - QCD and Event Simulation (Pavia)
 - Monte Carlo Generators (University of Milano-Bicocca)

Conflicting requirements

- Provide combined PDFs that match experimental precision requirements. (Task 3.3a)
- Make the PDF computations computationally affordable.

Conflicting requirements

- Provide combined PDFs that match experimental precision requirements. (Task 3.3a)
- Make the PDF computations computationally affordable.

Adequate representation Interface with experimental framework.

Conflicting requirements

- Provide combined PDFs that match experimental precision requirements. (Task 3.3a)
- Make the PDF computations computationally affordable.

Adequate representation Interface with experimental framework. Avoid bias faithful representation of the prior.

RESOLUTION APPROACH

• Fluid communication with experimentalists to understand their requirements.

RESOLUTION APPROACH

- Fluid communication with experimentalists to understand their requirements.
- Simplify the problem and understand its basic structure.

RESOLUTION APPROACH

- Fluid communication with experimentalists to understand their requirements.
- Simplify the problem and understand its basic structure.
- Develop efficient code and visualization techniques that allow to iterate rapidly.

Research

Research

Research

Research

Research

• Integrate theoretical uncertainties in PDFs (M2.1.2).

Private secondment

- Gain experience in an enterprise environment.
- Develop technical skills (programming).

Research

• Integrate theoretical uncertainties in PDFs (M2.1.2).

Private secondment

- Gain experience in an enterprise environment.
- Develop technical skills (programming).
- **Outreach** Design a carry on a high impact activities within the HiggsTools Network (
 - Convene an open Journal Club
 - Outreach activities for the general public.

The most likely prospect is to make an application for an EU Marie Skłodowska-Curie Fellowship in 2018.

THANK YOU!