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Introduction

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics (Brownian Motion).
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Systems far from equilibrium

Consider a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows, thus
breaking time-reversal invariance
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EQUILIBRIUM
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Lars Onsager (1903-1976)

‘As in other kinds of book-keeping, the trickiest questions that arise in
the application of thermodynamics deal with the proper identification and
classification of the entries; the arithmetics is straightforward’ (Onsager,
1967).
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FIRST PRINCIPE

∆U = W + Q

THE ENERGY OF THE UNIVERSE IS CONSTANT.
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IRREVERSIBILITY

Whenever dissipation and heat exchanges are involved, time
reversibility seems to be lost
SOME EVENTS ARE ALLOWED BY NATURE BUT NOT THE
OTHERS!

A criterion for separating allowed processes from impossible one is
required (Clausius, Kelvin-Planck).
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SECOND PRINCIPLE

A NEW physical concept (Clausius): ENTROPY.

S2 − S1 ≥
∫
1→2

∂Q
T

Clausius Inequality (1851)

THE ENTROPY OF THE UNIVERSE INCREASES.
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The Mistress of the World and Her Shadow

• A system wants to minimize its energy.

• A system wants to maximize its entropy.

This competition between energy and entropy is at the heart of most of
everyday physical phenomena (such as phase transitions: ice → water).

The two principles of thermodynamics can be embodied simultaneously
by the FREE ENERGY F :

F = U − TS

The decrease of free energy represents the maximal work that one can
extract from a system.
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Free energy: Maximal Work Theorem

Consider a gas enclosed in a chamber with a moving piston. We suppose
that the gas evolves from state A to B and that it can exchange heat
only with it environment at fixed temperature T .

A
V    

B
V    

T T

Because of irreversibility, the Work, Wuseful , that one can extract from
this system is at most equal to to the decrease of free energy:

〈Wuseful〉 ≤Finitial − Ffinal = −∆F
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STATISTICAL MECHANICS

J. C. Maxwell L. Boltzmann

The connection with thermodynamics is given by Boltzmann’s formula or,
equivalently

F = −kTLog Z
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Thermal Equilibrium: a dynamical state

Equilibrium is a dynamical concept. At the molecular scale things
constantly change and a system keeps on evolving through various
microscopic configurations:
Thermodynamic observables are nothing but average values of
fluctuating, probabilistic, microscopic quantities.

Robert Brown (1773-1858)
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Physics of Brownian Motion: The Einstein Formula

The Brownian Particle is restlessly shaken by water molecules. It diffuses
as a random-walker.

D = RT
6πηaN

R: Perfect Gas Constant
T: Temperature

η : viscosity of water
a: diameter of the pollen
N : Avogadro Number

Jean Perrin: ‘I have weighted the Hydrogen Atom’
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Fluctuation-Dissipation Relation

Suppose that the Brownian Particle is subject to a small force fext.
Balancing with the viscous force −(6πηa)v (Stokes) gives the limiting
speed

v∞ = σfext with σ =
1

6πηa

The response coefficient σ is called a susceptibility.

The Einstein Relation can be rewritten as

σ =
D

kT

Susceptibility (Linear Response) ≡ Fluctuations at Equilibrium

(Kubo Formula)
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Time-reversal Invariance and Detailed Balance

The microscopic equations are invariant by time-reversal: the probability
of a given trajectory in phase-space is equal to the probability of the time
reversed trajectory.
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DETAILED BALANCE:

e−
E(C)
kT W (C→C′)

e−
E(C′)
kT W (C′→C)

= 1

Onsager (1931)

A system is at thermal equilibrium iff it satisfies detailed-balance.
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Onsager’s Reciprocity Relations (1931)

∆Τ

∆Τ

∆Τ
1

2

3

Ji = −
∑3

k=1 Lik
∂T
∂xk

(Fourier Law)

The Conductivity Tensor L remains symmetric even though the crystal
does not display any special symmetry

Lik = Lki

Crucial for Thermoelectric Effects.

K. Mallick Recent Developments in Non-Equilibrium Statistical Physics



Linear Response Theory

Brownian Fluctuations show that Equilibrium is a dynamical
concept.

The fact that the dynamics converges towards thermodynamic
equilibrium and time-reversal invariance (detailed-balance) are the
key-properties behind Einstein and Onsager’s Relations.

Thermodynamic equilibrium is characterized by the fact that the average
values of all the fluxes exchanged between the system and its
environment (matter, charge, energy, spin...) identically vanish.
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OUT OF EQUILIBRIUM

In Nature, many systems are far from thermodynamic equilibrium and
keep on exchanging matter, energy, information with their surroundings.
There is no general conceptual framework to study such systems.
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A Surprise: The Jarzynski Identity

Remember the maximal work inequality:

〈W 〉 ≤ FA − FB = −∆F

We put brackets to emphasize that we consider the average work:
Statistical Physics has taught us that physical observables fluctuate.

It was found very recently that there exists a remarkable equality that
underlies this classical inequality.〈

e
W
kT

〉
= e−

∆F
kT

K. Mallick Recent Developments in Non-Equilibrium Statistical Physics



A Surprise: The Jarzynski Identity

Remember the maximal work inequality:

〈W 〉 ≤ FA − FB = −∆F

We put brackets to emphasize that we consider the average work:
Statistical Physics has taught us that physical observables fluctuate.

It was found very recently that there exists a remarkable equality that
underlies this classical inequality.〈

e
W
kT

〉
= e−

∆F
kT

K. Mallick Recent Developments in Non-Equilibrium Statistical Physics



The Jarzynski Identity

〈
e

W
kT

〉
= e−

∆F
kT

Jarzynski’s Work Theorem (1997)
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Consequences

1. Jarzynski’s identity mathematically implies the good old maximal work
inequality.

2. But, in order to have an EQUALITY, there must exist some
occurrences in which

W > −∆F

There must be instances in which the classical inequality which results
from the Entropy Principle is ‘violated’.

3. Jarzynski’s identity was checked experimentally on single RNA
folding/unfolding experiments (Bustamante et al.): it has experimental
applications in biophysics and at the nanoscale.

4. The relation of Crooks: a refinement Jarzynski’s identity that allows
us to quantify precisely the ‘transient violations of the second principle’.

PF (W )

PR (−W )
= e

W−∆F
kT (Crooks,1999)
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Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with
probability p (resp. q = 1− p). Their sum is denoted by SN =

∑N
1 εk .

• The Law of Large Numbers implies that SN/N → p − q a.s.

• The Central Limit Theorem implies that [SN − N(p − q)]/
√
N

converges towards a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Pr

(
SN
N

= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p − q).

The function Φ(r) is a Large Deviation Function: it encodes the
probability of rare events.

Φ(r) =
1 + r

2
ln

(
1 + r

2p

)
+

1− r

2
ln

(
1− r

2q

)
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Density Fluctuations

Consider a gas in a room, at thermal equilibrium. The probability of
observing a density profile ρ(x) takes the form:

Pr{ρ(x)} ∼ e−βV F({ρ(x)}

What is F({ρ(x)}?

F({ρ(x)}) =

∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

Free Energy can be viewed as a Large Deviation Function.

R1 R2

What is the probability of observing an atypical density profile in the
steady state? What does the functional F({ρ(x)}) look like for such a
non-equilibrium system?
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Large Deviations of the Total Current

R1

J

R2

Let Yt be the total charge transported through the system (total current)
between time 0 and time t.

In the stationary state: a non-vanishing mean-current Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(
Yt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Note that Φ(j) is positive, vanishes at j = J and is convex (in general).
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The Gallavotti and Cohen Symmetry

Large deviation functions obey remarkable identities that remain valid far
from equilibrium: The Fluctuation Theorem of Gallavotti and Cohen.

Large deviation functions obey a symmetry that remains valid far from
equilibrium:

Φ(j)− Φ(−j) = αj

Equivalently,
Prob ( j )

Prob (−j)
∼e−tαj

This Fluctuation Theorem of Gallavotti and Cohen is deep and general: it
reflects covariance properties under time-reversal.

In the vicinity of equilibrium the Fluctuation Theorem yields the
fluctuation-dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).
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The General Large Deviations Problem

More generally, the probability to observe an atypical current j(x , t) and
the corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T (L being
the size of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Is there a Principle which gives this large deviation functional for
systems out of equilibrium?
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Why study Large Deviations?

Equilibrium Thermodynamic potentials (Entropy, Free Energy) can
be defined as large deviation functions.

Large deviations are well defined far from equilibrium: they are good
candidates for being non-equilibrium potentials.

Large deviation functions obey remarkable identities, valid far from
equilibrium (Gallavotti-Cohen Fluctuation Theorem; Jarzynski and
Crooks Relations).

These identities imply, in the vicinity of equilibrium, the fluctuation
dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).

K. Mallick Recent Developments in Non-Equilibrium Statistical Physics



EXACT RESULTS

FAR FROM EQUILIBRIUM
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Study Non-Equilibrium via Model Solving

The fundamental non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries (ASEP)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

Thousands of articles devoted to this model in the last 20 years:
Paradigm for non-equilibrium behaviour
Statistics of the current and of the density profile?
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ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

• Interface dynamics. KPZ equation

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.
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An Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).

=3
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The Matrix Ansatz for ASEP (DEHP, 1993)

The stationary probability of a configuration C is given by

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉

where τi = 1 (or 0) if the site i is occupied (or empty).

The normalization constant ZL = 〈W | (D + E )L |V 〉.

The operators D and E , the vectors 〈W | and |V 〉 satisfy

D E − qED = (1− q) (D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |

This algebra, related to q-deformed oscillators, encodes the stationary
properties of the system and allows us to derive the exact phase diagram
of the model.
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The Phase Diagram of the open ASEP

LOW  DENSITY

HIGH   DENSITY

MAXIMAL 

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1
a++1 : effective left reservoir density.

ρb = b+

b++1 : effective right reservoir density.

a± =
(1− q − α + γ)±

√
(1− q − α + γ)2 + 4αγ

2α

b± =
(1− q − β + δ)±

√
(1− q − β + δ)2 + 4βδ

2β
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Large Deviations of the Density Profile in ASEP

The probability of observing an atypical density profile in the steady
state of the ASEP was calculated starting from Matrix Ansatz for the
exact microscopic solution (B. Derrida, J. Lebowitz E. Speer, 2002).
In the symmetric case q = 1:

F({ρ(x)}) =

∫ 1

0

dx

(
B(ρ(x),F (x)) + log

F ′(x)

ρ2 − ρ1

)
where B(u, v) = (1− u) log 1−u

1−v + u log u
v and F (x) satisfies

F
(
F ′2 + (1− F )F ′′

)
= F ′2ρ with F (0) = ρ1 and F (1) = ρ2 .

This functional is non-local as soon as ρ1 6= ρ2.

This functional is NOT identical to the one given by local equilibrium.

Note that in the case of equilibrium, for ρ1 = ρ2 = ρ̄, we recover

F({ρ(x)}) =

∫ 1

0

dx

{
(1− ρ(x)) log

1− ρ(x)

1− ρ̄
+ ρ(x) log

ρ(x)

ρ̄

}
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Current Statistics

A parametric representation of the cumulant generating function E (µ) is
obtained using integrability techniques (Bethe Ansatz).
For α = β = 1:

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Large Deviation Function of the Current

In the limit of large size systems, the following exact expression is found
for the Large Deviation Function of the current:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).
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The Hydrodynamic Limit: Diffusive case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The typical evolution of the system is given by the hydrodynamic
behaviour (Burgers-type equation):

∂tρ = ∇ (D(ρ)∇ρ)− ν∇σ(ρ) with D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)

(Lebowitz, Spohn, Varadhan)

How can Fluctuations be taken into account?
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Fluctuating Hydrodynamics

Consider Yt the total number of particles transfered from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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A General Principle for Large Deviations?

The probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during a time L2T (L being the size
of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

A general principle has been found (G. Jona-Lasinio et al.), to express
this large deviation functional I(j , ρ) as an optimal path problem:

I(j , ρ) = min
ρ,j

{∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) + D(ρ)∇ρ)2

2σ(ρ)

}
with the constraint: ∂tρ = −∇.j

Knowing I(j , ρ), one could derive the large deviations of the current and
of the density profile. For instance, Φ(j) = minρ{I(j , ρ)}

However, at present, the available results for this variational theory are
precisely the ones given by exact solutions of the ASEP.
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Macroscopic Fluctuation Theory

Mathematically, one has to solve the corresponding Euler-Lagrange
equations. The Hamiltonian structure is expressed by a pair of conjugate
variables (p, q).
After some transformations, one obtains a set of coupled PDE’s (here, we
take ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp −
1

2
σ′(q)(∂xp)2

where q(x , t) is the density-field and p(x , t) is a conjugate field.
The ’transport coefficients’ D(q)(= 1) and σ(q)(= 2q(1− q)) contain
the information of the microscopic dynamics relevant at the macroscopic
scale.

A general framework but the MFT equations are very difficult to
solve in general. By using them one can in principle calculate large
deviation functions directly at the macroscopic level.

The analysis of this new set of ‘hydrodynamic equations’ has just
begun!
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Conclusions

Non-Equilibrium Statistical Physics has undergone remarkable
developments in the last two decades and a unified framework is
emerging.

Large deviation functions (LDF) appear as a generalization of the
thermodynamic potentials for non-equilibrium systems. They satisfy
remarquable identities (Gallavotti-Cohen, Jarzynski-Crooks) valid far
from equilibrium.

The LDF’s are very likely to play a key-role in the future of
non-equilibrium statistical mechanics.

Current fluctuations are a signature of non-equilibrium behaviour. The
exact results derived for the Exclusion Process can be used to calibrate
the more general framework of fluctuating hydrodynamics (MFT), which
is currently being developed.
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