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N=4 super Yang Mills theory

Maximally supersymmetric version of YM theory in 4d

L =
1

4g2
trFµ⌫Fµ⌫ +

1

2
trDµ�ABDµ�AB + tr  ̄A�µDµ A

+ Yukawa and quartic interactions

For short, theory of a massless spin 1 (extended) 
supermultiplet; everything else follows from it
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3 good reasons to like it

Integrability : it is believed to be “exactly solvable”, in the     
‘t Hooft planar limit at least, and referred to as the Ising 
model of 4d gauge theories

Theoretical laboratory : one can explore and identify 
mathematical and physical structures (at higher loops or 
strong coupling) more easily than in any other theory

AdS/CFT correspondence : it is one of these few theories for 
which we believe we know precisely what is the string theory 
dual (here it is IIB string theory in AdS5 * S5)
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3 good reasons to like it

Hence we must solve it! 

AdS/CFT correspondence : it is one of these few theories for 
which we believe we know precisely what is the string theory 
dual (here it is IIB string theory in AdS5 * S5)

Integrability : it is believed to be “exactly solvable”, in the     
‘t Hooft planar limit at least, and referred to as the Ising 
model of 4d gauge theories

Theoretical laboratory : one can explore and identify 
mathematical and physical structures (at higher loops or 
strong coupling) more easily than in any other theory

Tuesday, 22 December, 15



Spectrum of scaling dimensions and spin chain

Advances in integrability

Gluon scattering amplitudes and Wilson loops

Structure constants and string splitting/joining
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Scaling dimensions and spin chain
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Spectral problem

O(0)

O(x)†

Local (single trace) operator

Spectrum of scaling dimensions of local 
operators

⌦O(x)†O(0)
↵
=

1

x

2�

O = tr�1�2 . . .�L

Radiative corrections induce mixing of 
operators

Mixing problem
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Spectral problem

O(0)

O(x)†

Local (single trace) operator

Spectrum of scaling dimensions of local 
operators

⌦O(x)†O(0)
↵
=

1

x

2�

O = tr�1�2 . . .�L

Equivalent to a spin chain problem

� = �
canonical

+ 2g2HXXX +O(g4)

‘t Hooft coupling

H

Radiative corrections induce mixing of 
operators = spin chain Hamiltonian
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Hans Bethe

Werner Heisenberg

One-loop dilatation operator

HXXX =
LX

i=1

(I � Pii+1)

Heisenberg spin chain is integrable :

- As many commuting conserved charges 
as degrees of freedom (i.e., L for SU(2) 
spin chain)

- Fundamental excitations (magnons) 
about the ferro vacuum have a factorized 
S-matrix

Spectral problem

S123 = S23S13S12

[Minahan,Zarembo’02]
[Beisert,Staudacher’03]
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Bethe wave function

Spectral problem

p1

p2

p2

p1p3 p3

+S(p1, p2) +...

Periodicity conditions gives the Bethe ansatz equations
(ie quantization conditions for the magnon momenta)

eipiL
Y

j 6=i

S(pi, pj) = 1

And the spectrum of energies 
follows : E =

X

i

E(pi)
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Higher loops?

Increasing loop order = increasing range of 
the spin chain Hamitonian

Not much is known about the resulting long range spin chain
It is however believed to remain integrable
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Higher loops?

Not much is known about the resulting long range spin chain
It is however believed to remain integrable

string in AdS
classically
integrable

weak coupling strong coupling

[Bena,Pochinski,Roiban’03]

Increasing loop order = increasing range of 
the spin chain Hamitonian

Hint :
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Higher loops?

Not much is known about the resulting long range spin chain
It is however believed to remain integrable

How do we solve for the spectrum of an unknown Hamiltonian?
We simply add loop corrections to our previous ingredients : 
energy and S-matrix

Increasing loop order = increasing range of 
the spin chain Hamitonian
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Power of symmetry

Residual symmetry group of BMN (ferro) vacuum :

PSU(2|2) ⇥ PSU(2|2) n R3

Left Right

p1 p2

[Beisert’05]

Central extensions :
contain energy (and 
coupling constant)

Magnon transforms in bi-fundamental irrep

(Dimension = 16 = 8 bosons + 8 
fermions)

2|2 ⌦ 2|2
Left Right

Dispersion relation

E =

r
1 + 16 g2 sin2

⇣p
2

⌘
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Power of symmetry

PSU(2|2) ⇥ PSU(2|2) n R3

Left Right

p1 p2

[Beisert’05]

 Symmetry fixes S-matrix

S12 ⇠ S0
12 S12 ⇥ Ṡ12

Fulfills Yang-Baxter equationX

up to scalar factor

Residual symmetry group of BMN (ferro) vacuum :

=
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Power of symmetry

PSU(2|2) ⇥ PSU(2|2) n R3

Left Right

p1 p2

[Beisert’05]

 Symmetry fixes S-matrix

S12 ⇠ S0
12 S12 ⇥ Ṡ12

Fulfills Yang-Baxter equation

Scalar factor constrained by crossing symmetry
[Janik’05]

X
X

up to scalar factor

Residual symmetry group of BMN (ferro) vacuum :
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Full solution?

BMN Vacuum
Spin Chain Picture

Symmetries
Beisert S-matrix

Beisert-Staudacher
Asymptotic Bethe Ansatz

2002

2005

QCD Story
Perturbative
Integrability

1995-1998

Is it that simple?
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Full solution?

BMN Vacuum
Spin Chain Picture

Symmetries
Beisert S-matrix

Beisert-Staudacher
Asymptotic Bethe Ansatz

2002

2005

QCD Story
Perturbative
Integrability

1995-1998

Is it that simple?

No, one must also account for 
finite size corrections 
(because spin chain has finite 
length)

Tuesday, 22 December, 15



Full solution

BMN Vacuum
Spin Chain Picture

Symmetries
Beisert S-matrix

Beisert-Staudacher
Asymptotic Bethe Ansatz

Thermodynamic Bethe 
                Ansatz

Quantum Spectral Curve

2002

2005

2009

Two Years Ago

QCD Story
Perturbative
Integrability

1995-1998
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Applications

Scaling dimension of shortest unprotected operator 
(so-called Konishi multiplet)

[Marboe,Volin’14]

Comments :
- Finite size corrections here starts at 4 loops
- Z.. stand for single valued multiple zeta values
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Applications

Scaling dimension of twist two operator for complex spin
[Gromov,Levkovich-Maslyuk,Sizov’15]

Plot of real part of the spin S as a function of the scaling dimension 
for ‘t Hooft coupling = 6.3

�
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Applications

[Gromov,Levkovich-Maslyuk,Sizov’15]

BFKL Pomeron 
branch

DGLAP branch

Scaling dimension of twist two operator for complex spin

Plot of real part of the spin S as a function of the scaling dimension 
for ‘t Hooft coupling = 6.3

�
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Gluon scattering amplitudes
and

Wilson loops
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Scattering amplitudes = Wilson loops

p2

p3

p4

p5

p6

p1
x1

x2

x3

x4

x5

x6

pi = xi+1 � xi

=

gluon scattering
amplitude

light-like polygonal
Wilson loop

[Alday,Maldacena’07]
[Drummond,Korchemsky,Sokatchev’07]

[Brandhuber,Heslop,Travaglini’07]
[Drummond,Henn,Korchemsky,Sokatchev’07]

In this theory they are the same

A W
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Scattering amplitudes = Wilson loops

p2

p3

p4

p5

p6

p1
x1

x2

x3

x4

x5

x6

pi = xi+1 � xi

=

gluon scattering
amplitude

light-like polygonal
Wilson loop

[Alday,Maldacena’07]
[Drummond,Korchemsky,Sokatchev’07]

[Brandhuber,Heslop,Travaglini’07]
[Drummond,Henn,Korchemsky,Sokatchev’07]

Dual conformal symmetry

A W
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Combining symmetries

Super conformal + dual super conformal
gives a Yangian symmetry
(one of the hallmark of integrability)

[Drummond, Henn, Plefka’09]

Put severe constraints on the integrand of 
scattering amplitudes which can be constructed 
exactly

They lead to a purely geometrical reformulation of
these integrands (Grasmannian, Amplituhedron)

[Arkani-Hamed, Bourjaily, 
Cachazo,Caron-Huot,Goncharov, 
Postnikov, Trnka‘10’12]

Also put constraints on the full (integrated) 
scattering amplitudes

They lead to a bootstrap for constructing SA without 
any use of Feynman diagrams (proceeds from 
knowleged of space of functions + additional physical 
requirements)

[Dixon,Drummond, Henn’11]
[Dixon,Drummond, vonHippel, 
Pennington’13]
[Dixon,Drummond, Duhr, 
Pennington’13]
[Drummond,Papathanasiou, 
Spradlin’14]
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Immediate consequences

[Drummond,Henn,Korchemsky,Sokatchev’07]

Amplitudes are function of cross ratio only (up to 
divergent part) :

Bern-Dixon-Smirnov ansatz
(contains all IR/UV divergences)
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Immediate consequences

1

1

2

3

4

5

6

2

1

6

5

4

3

5

6

1

2

3

4

u2 =
x

2
15x

2
24

x

2
14x

2
25

u1 =
x

2
13x

2
46

x

2
14x

2
36

u3 =
x

2
26x

2
35

x

2
25x

2
36

remainder functionRn = function of
3n-15 cross ratios=

[Drummond,Henn,Korchemsky,Sokatchev’07]

Amplitudes are function of cross ratio only (up to 
divergent part) :
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Immediate consequences

remainder functionRn = function of
3n-15 cross ratios=

[Drummond,Henn,Korchemsky,Sokatchev’07]

Amplitudes are function of cross ratio only (up to 
divergent part) :

In particular 

R4 = R5 = 0

(simply because one cannot form
cross ratios for 4- and 5-edge null
WLs)

4- and 5-gluon amplitudes are thus known 
exactly and given by the BDS part only!
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Immediate consequences

remainder functionRn = function of
3n-15 cross ratios=

[Drummond,Henn,Korchemsky,Sokatchev’07]

Amplitudes are function of cross ratio only (up to 
divergent part) :

Yet another consequence :

WLs are some sort of non-local Green functions
and one can use the OPE for building big WLs out of smaller ones
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1+1d background :  flux tube sourced by two parallel null lines

Wilson loops at finite coupling
[Alday,Gaiotto,Maldacena,Sever,Vieira’10]

Sum over all flux-tube eigenstates

bottom&top cap excite the flux tube out of its ground state






W =
X

states 

C
bot

( )⇥ e�E( )⌧+ip( )�+im( )� ⇥ C
top

( )

Hamiltonian picture
for OPE
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[Alday,Gaiotto,Maldacena,Sever,Vieira’09]

W =
X

states 

C
bot

( )⇥ e�E( )⌧+ip( )�+im( )� ⇥ C
top

( )

Similar to 
usual OPE

=
X

 

Wilson loops at finite coupling
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Pentagon way : main ideas

Remember : use small objects
to build bigger ones

Here smallest objects : squares and pentagons
(no cross ratios = fixed by conformal symmetry)

Analogy with OPE data for local operators :
Square = 2pt function = spectral data
Pentagon = 3pt function = coupling

[BB,Sever,Vieira’13]
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Step 1:
Pick a polygon and

divide it into squares

and think about each square
as hosting the flux tube

in a particular state

Implementation 
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vac

 3

 2

 1

vac

Step 1:
Pick a polygon and

divide it into squares

Step 2:
Decompose the flux tube state

over a basis of eigenstates
(w.r.t symmetries of the square)

Implementation 
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=

X

 i

"
Y

i

e�Ei⌧i+ipi�i+imi�i

#
⇥ upcoming factor

Propagating phase :
kinematics/geometry

sits here

angular momentum
momentumenergy

vac

 3

 2

 1

vac

Implementation 
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vac

vac

 1

 2

 3

=
X

 i

"
Y

i

e�Ei⌧i+ipi�i+imi�i

#
⇥

P (0| 1)P ( 1| 2)P ( 2| 3)P ( 3|0)

Pentagon transition :
measures the amplitude for
a transition from one state

to another

Implementation 
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vac

vac

 1

 2

 3

=
X

 i

"
Y

i

e�Ei⌧i+ipi�i+imi�i

#
⇥

P (0| 1)P ( 1| 2)P ( 2| 3)P ( 3|0)

To compute amplitudes we need :

The spectrum of flux-tube states 

All the pentagon transitions

Pentagon way

Tuesday, 22 December, 15



The flux-tube eigenstates

 = N particles state

Field insertions along a light-ray:
create/annihilate state on the flux tube

Not so much different from spin chain...
... in fact it is the same problem as before but expanded around a different vacuum 

Discretized version of light-ray:
bath of covariant derivatives

F = Fz� on top of the flux tube by means of a linear combination of local operators
of the form3

O = tr (Z DDDD . . . DDDD F DDDD . . .DDDD F DDDD . . .DDDD Z) (20)

where D = D� is the covariant derivative along the null direction x�.

This picture is computationally appealing since a lot is known about single-trace op-
erators in planar N = 4 SYM using the technology based on integrability. Thanks
to this mapping to the integrable spin chain, the complete spectrum of flux-tube ex-
citations and their associated dispersion relations were found at any coupling [6]. We
can also derive, from the underlying spin-chain description, the way these excitations
scatter – i.e. their S-matrices – at any coupling [26, 35]. The energies enter directly
the decomposition (1) while the S-matrices are the fundamental objects governing the
pentagon transitions. The use of integrability is then essential to our approach since it
allows us to compute these objects at finite coupling.

• Excited GKP String. Finally, it is sometimes convenient to think of the flux tube
as the (dual of the) GKP string [19]. Indeed, the string that ends on the null square
at the boundary of AdS is dual to the two-point function of the large spin operators
discussed above [36,1].4 Excitations of the flux tube are dual to ripples on this string.
For example, (20) is dual to a folded string in AdS5 with two bumps that are dual to
the gluonic excitations, while (5) involves fluctuations in the sphere S5, dual to the
scalar excitations.

The string point of view is also quite instructive. Since it is based on a two dimensional
quantum field theory, non-trivial transformations such as mirror or crossing symmetries
are conceptually simpler to grasp in this dual language.

As we see, all these descriptions are complementary and depending on the context we might
find convenient to use one or the other. Let us now focus on some features that are common
to all these descriptions.

• Since the flux is infinite and its excitations are gapped, the number of excitations N
is a conserved charge. These excitations can be of di↵erent kinds: there are fermions,
gluons, scalars and also bound states of these more fundamental fields [6]. We use a
vector of indices a = {a1, . . . , aN} to indicate what kind of particles we are considering.
For example, in (5) we have a = {Z, . . . , Z} while for (20) we get a = {F, F}. Since it is
typically clear which excitations are being discussed we will often omit the dependence
on a in most formulae.

• The N excitations have momenta {p1, . . . , pN}. These momenta are conjugate to a
non-compact direction labelled (in each square) by � and as such they can take any

3In (20) we have two gluonic excitations F plus two scalars Z. These scalars are already present for the
vacuum (i.e., twist two) state O

vac

= tr (Z DDDD . . .DDDD Z)+ . . . since the derivatives need something
to act on. They are not dynamical, however, and can be thought as being part of the background.

4Strictly speaking, Gubser-Klebanov-Polyakov studied a folded string rotating in the middle of AdS [19].
This description is related to the one invoked here by analytic continuation [36,37,1].

12

p1 p2

Flux tube states Large spin operators$
Tuesday, 22 December, 15



The pentagon transitions

u

v v v1 v2

u2u1 u1 u2

P (u|v) P (u1, u2|v) P (u1, u2|v1, v2)

Field insertions on pentagon WL :

Reminiscent of form factors...
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In short, a pentagon = 5 quadrants glued together

excess angle =
⇡

2

�D1

1

2 2

3
3

4
4

4

5
5

=

Pentagon as twist operator

Geometrical picture : Hamiltonian picture:

twist operator �D
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In short, a pentagon = 5 quadrants glued together

�D1

1

2 2

3
3

4
4

4

5
5

=

Pentagon as twist operator

Pentagon transitions as form factors

P (u1, u2|v1) =
⌦
v1
�� ��u1, u2

↵
�D
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The pentagon transitions

u

v v v1 v2

u2u1 u1 u2

P (u|v) P (u1, u2|v) P (u1, u2|v1, v2)

Field insertions on pentagon WL :

Reminiscent of form factors...

... use integrable bootstrap for finding them
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The pentagon transitions

P (u|v)
P (v|u) = = S

u

u

u

v

v v

=u��

u

v vP (u�� |v) = P (v|u)

P (u|v)2 =
S(u, v)

(u� v)(u� v + i)S(u� , v)

This is enough to find the transitions in terms of S-matrix :

Fundamental axiom :

Mirror axiom :
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All pentagon transitions

� : scalar

 : fermion

F : gluon

= FA|B(u|v)⇥
SAB(u, v)

SAB(u� , v)
PA|B(u|v)2

[BB,Sever,Vieira‘13’14]
[BB,Caetano,Cordova,Sever,Vieira’15]

[Belitsky‘14’15]
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W
hex

=

[BB, Sever, Vieira’15]

=
X

n

1

Sn

Z
du1 . . . dun

(2⇡)n
⇧({ui})

⇧({ui}) = ⇧dyn ⇥⇧mat

⇧dyn =
Y

i

µ(ui) e
�E(ui)⌧+ip(ui)�+imi�

Y

i<j

1

|P (ui|uj)|2

OPE series :

Flux tube integrand :

Full 6-gluon amplitude
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Full 6-gluon amplitude

W
hex

=

[BB, Sever, Vieira’15]

=
X

n

1

Sn

Z
du1 . . . dun

(2⇡)n
⇧({ui})

⇧({ui}) = ⇧dyn ⇥⇧mat

⇧dyn =
Y

i

µ(ui) e
�E(ui)⌧+ip(ui)�+imi�

Y

i<j

1

|P (ui|uj)|2

That’s it!
(everything here is known
at any coupling)

OPE series :

Flux tube integrand :
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Multi-particle factorization in massless gauge theory

ANMHV
6 A4 A4

1

2

3 4

5

6� +

�

�

� ++

+

1

p2

���!
p2!0

Application : factorization of amplitude

' A4(1, 2, 3, p)
F (p, si,i+1)

p2
A4(�p, 4, 5, 6) [Dixon,von Hippel’14]

The same factorization function is conjectured to control 
factorization of bigger amplitudes
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Multi-particle factorization in massless gauge theory

ANMHV
6 A4 A4

1

2

3 4

5

6� +

�

�

� ++

+

1

p2

���!
p2!0

Application : factorization of amplitude
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Multi-particle factorization in massless gauge theory

ANMHV
6 A4 A4

1

2

3 4

5

6� +

�

�

� ++

+

1

p2

���!
p2!0

Application : factorization of amplitude

nullDual limit for Wilson loops 
corresponds to two cusps becoming 
null separated
This limit is within radius of 
convergency of the OPE
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[BB,Sever,Vieira - in progress]

I ⌘
1Z

0

du e�u p2 ��cusp log

2 u

1) At weak coupling

Perfect match up to 4 
loops
[Dixon,von Hippel’14], [Dixon,von 
Hippel,McLeod’15]

I =

1

p2

X

l

g2l Poll(log p
2
)

Toy model for the amplitude

Application : factorization of amplitude
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[BB,Sever,Vieira - in progress]

I ⌘
1Z

0

du e�u p2 ��cusp log

2 u

1) At weak coupling I =

1

p2

X

l

g2l Poll(log p
2
)

Toy model for the amplitude

Application : factorization of amplitude
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[BB,Sever,Vieira - in progress]

I ⌘
1Z

0

du e�u p2 ��cusp log

2 u

1) At weak coupling I =

1

p2

X

l

g2l Poll(log p
2
)

Toy model for the amplitude

Application : factorization of amplitude

2) At any g 6= 0 I|p2
=0

=

1Z

0

du e��cusp log

2 u < 1 No pole!
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[BB,Sever,Vieira - in progress]

I ⌘
1Z

0

du e�u p2 ��cusp log

2 u

1) At weak coupling I =

1

p2

X

l

g2l Poll(log p
2
)

Toy model for the amplitude

Application : factorization of amplitude

2) At any g 6= 0 I|p2
=0

=

1Z

0

du e��cusp log

2 u < 1 No pole!

3) There is a discontinuity DisA
6

/ e��cusp log

2
(p2

) 6= 0
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p2

A6

g

0

DisA6

background ⇠ 1

1

Cartoon of what is happening

Application : factorization of amplitude
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Structure constants
and

string splitting/joining

hO1(x1)O2(x2)O3(x3)i = C123

x

�12
12 x

�23
23 x

�13
13

O1(x1)

O2(x2) O3(x3)
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L1

L2 L3

l13 =
L1 + L3 � L2

2

l12

l23

O1

O2 O3

Spin chain tayloring

Recipe : cut spin chain states and compute their 
overlap following the Wick contractions

topology :
- 3 operators
- 3 bridges

How to go to higher loops? (spin chain wave functions are 
unknown, as well as correction to splitting vertex)

[Many people, see e.g.
Escobedo,Gromov,Sever,Vieira,

Foda,Fleury,Caetano,
Kazama,Komatsu,Nishimura,

Jiang,Kostov,Petrovskii,Serban,
etc.]
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O1(x1)

O2(x2) O3(x3)

C123

Inspiration from string

3-punctured sphere pair of pants
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Asymptotic description

Cut Open Here Here

And Here

1 pair of pants = 2 hexagons

Cutting procedure :
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Same but with excitations

u2u1
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Same but with excitations

u2u1

u2

u1

+

u2u1

+

u2

u1

+
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Same but with excitations

u2u1

u2

u1

+

u2u1

+

u2

u1

+

eip2`

S(u1, u2)e
ip1` ei(p1+p2)`

length bridge
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⇥

u1u2

Hexagon factorization

Elementary block

u3

Hexagon form factor : contribution of an hexagon decorated 
with magnons on its edges

Apply integrable bootstrap again to determine it at finite 
coupling

[BB,Komatsu,Vieira’15]
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=
NY

i<j

h(ui, uj) ⇥

L R

N-magnon hexagon

Conjecture (one can actually prove it for low number of magnons):

hA1Ȧ1···AN ȦN =(�1)f
NY

i<j

hij

⌦
�ȦN
N . . .�Ȧ1

1 | S |�A1
1 . . .�AN

N

↵

S
SU(2|2) 
Beisert 
S-matrix
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hO1O2O3i = C

•��
123 ⇥ tensor

x

�12
12 x

�23
23 x

�31
31

i.e.

e.g. O1 = trDSZL1

Consider 2 BPS operators and 1 non-BPS operator

Asymptotic formula

BPS BPS

Non-BPS

with the rest BPS
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123
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123

◆2

=

QS
k=1 µ(uk)

det @ui�j
Q

i<j S(ui, uj)
⇥A2

Hexagon part

A =
Y

i<j

h(ui, uj)
X

↵[↵̄=u

(�1)|↵̄|
Y

j2↵̄

eipj`
Y

i2↵,j2↵̄

1

h(ui, uj)

Valid to all loops up to finite size effects

sum over partitions of Bethe 
Roots

Hexagon prediction :

Asymptotic formula
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Finite size effects

new virtual effects

O1

O2
O3

usual 
wrapping 

exchange of (mirror) particles
between the two hexagons
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O1

O2
O3

exchange of (mirror) particles
between the two hexagons

these virtual effects come from the 3 mirror 
channels (= where we cut)

Finite size effects

new virtual effects
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Finite size effects at weak coupling

The loop order is given by the size of the bridge

virtual effects    =                            at weak couplingO(g2`ij )

O1 O1

O3

O2 gluon passing through
the bridge
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Comparison with data

2-loop finite size effect

perfect agreement
(including zeta’s coming from finite size corrections)

BPS BPS

Non-BPS
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It allows us to attack increasingly complicated objects and find 
all-loop expressions (conjectures) for them,
like for amplitudes, structure constants, etc.

How far can we go? Can we bootstrap string loops? Can we solve to 
any order in the 1/N expansion?

Conclusions

Integrability comes with powerful new strategies for computing 
quantities at any value of the coupling in planar N=4 SYM 

theory

How can we prove all these conjectures? Can one understand why is 
this theory integrable after all?
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THANK YOU!
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