BSM round-up

Riccardo Rattazzi, EPFL

Annual Theory Christmas Meeting, 2015, IPPP Durham

Weak Scale Naturalness:

Ideology, Ingenuity & Reality

Riccardo Rattazzi, EPFL

Annual Theory Christmas Meeting, 2015, IPPP Durham

If $\mathcal{O}|_{\exp} \ll \max|\mathcal{O}_i|$ it seems we are missing something

Un-Naturalness = failure of dimensional analysis and selection rules

Mass Hierarchies

Naturalness of $\Lambda_{IR} \ll \Lambda_{UV}$ \checkmark stability of fixed point

3 options

1. Marginality

$$\mathcal{L}_{\text{mass}} = c \Lambda_{UV}^{\epsilon} \mathcal{O}_{4-\epsilon}$$
$$\Lambda_{IR}^{\epsilon} = c \Lambda_{UV}^{\epsilon} \qquad \qquad \Lambda_{IR} = c^{1/\epsilon} \Lambda_{UV}$$

algebraically small c and ϵ is enough to produce hierarchy

Ex: Yang-Mills, TechniColor, Randall-Sundrum model

Rattazzi, Zaffaroni 01 Strassler 03

2. Symmetry

$$\Lambda_{IR} = \sqrt{\epsilon} \Lambda_{UV}$$

- ϵ must be *hierarchically* small
- how does this smallness originate?

Ex: QCD, Supersymmetry

3. Sequestering

3. Sequestering

 Λ_{UV}

 Λ_{IR}

 Λ_{IR}

 $\Lambda_{IR} \sim \epsilon \Lambda_{UV}$ technically natural

 $\Lambda_{IR} \sim \epsilon \Lambda_{UV}$ technically natural

• SFT2 = 'UV completion of gravity' $\epsilon = \Lambda_{UV}/M_P$

Ex. a-gravity Salvio, Strumia 2012

- not clearly compatible with basic principles
- but imagine there was a gorgeous candidate for SFT1?well there isn't: Giudice, Isidori, Salvio, Strumia 2014

The Standard Model

Naturalness demands not too large $\Lambda_{\rm UV}$

How large Λ_{UV} can we tolerate compatibly with Naturalness?

What can we broadly say about the physics at Λ_{UV} ?

But notice:

a seemingly un-natural hierarchy $\Lambda_{UV} \gg m_W$ offers a remarkable bonus

$$\mathcal{L}_{SM} = \mathcal{L}^{(d \leq 4)} + \frac{1}{\Lambda_{UV}} \mathcal{L}^{(5)} + \frac{1}{\Lambda_{UV}^2} \mathcal{L}^{(6)} + \dots$$

- Accidentally possesses all the symmetries we observe in Nature: B, L, Flavor,...
- Not the case in any natural completion of the SM, where we have to resort to extra *ad hoc* assumptions

$\Lambda_{IR} \sim m_W$

How large Λ_{UV} can we tolerate compatibly with Naturalness?

What can we broadly say about the physics at Λ_{UV} ?

$$\delta m_h^2 = \frac{3y_t^2}{4\pi^2} \Lambda_t^2 - \frac{9g^2}{32\pi^2} \Lambda_g^2 - \frac{3{g'}^2}{32\pi^2} \Lambda_{g'}^2 + \dots$$

$$\Lambda_t < 0.45 \sqrt{\frac{1}{\epsilon}} \text{ TeV} \qquad \Lambda_g < 1.1 \sqrt{\frac{1}{\epsilon}} \text{ TeV} \qquad \Lambda_{g'} < 3.7 \sqrt{\frac{1}{\epsilon}} \text{ TeV}$$

Ingenuity

• soft models

high scale susy breaking, eg. SUGRA

- *supersoft models* composite Higgs, low scale susy breaking,...
- *hypersoft models* neutral naturalness: twin Higgs, ...

Soft Models: MSSM (and variants) with high scale mediation

m_a [GeV]

already pressed by data, requiring tuning of order 10%

Modern Composite Higgs

H = composite pseudo-NGB from CFT symmetry broken by SM couplings

Simplest option $H \in SO(5)/SO(4)$

Georgi, Kaplan '84 Arkani-Hamed, Cohen, Katz, Nelson '02 Agashe, Contino, Pomarol '04

- give up search for explicit gauge theory incarnations of CFT
- just characterize CFT in terms of the needed operator spectrum
- holographic realizations via warped compactifications do exist
- simplest option: low energy theory broadly described by 2 parameters Giudice, Grojean, Pomarol, RR, 2007

m_*	resonance mass scale
g_*	overall coupling

Measures of tuning

$$g_* \sim \frac{1}{\sqrt{N}}$$
$$f \sim \frac{m_*}{g_*} \sim \sqrt{N} \frac{m_*}{4\pi}$$

 4π

pseudo-NGB decay const

$$\epsilon \sim \frac{v_F^2}{f^2} \sim \frac{4\pi^2}{3y_t^2} \frac{m_h^2}{m_*^2}$$

Top mass and Higgs potential

$$|T\rangle \equiv \mathcal{O}_{L,R}|0\rangle$$

fermionic resonances with given q-numbers: the Top Partners

$$\left(\begin{array}{c}T\\B\end{array}\right)\oplus\left(\begin{array}{c}X_{5/3}\\T'\end{array}\right)$$

Expected in the most plausible cases

but notice indirect bounds

Hypersoft Models: Twin Higgs

Chacko, Goh, Harnik 2005

states with SM color and charge

$$- m_* \sim g_* f$$

$$\tilde{t}$$
 — $m_{\tilde{t}} \sim y_t f$

colored resonances outside LHC reach !!

Contino, Greco, Mahbubani, RR to appear

γγ at 750

arXiv:1512.04933

Roberto Franceschini, Gian F. Giudice, Jernej F. Kamenik, Matthew McCullough, Alex Pomarol, Riccardo Rattazzi, Michele Redi, Francesco Riva, Alessandro Strumia, Riccardo Torre

Subtle is the Lord?

Subtle is the Lord?

or Malicious is He?

Christmas 2011: the Higgs

Christmas 2015: ...

ATLAS					
$M \simeq 1$	$750{ m GeV}$		$\Gamma \sim 45 {\rm GeV}$	favored	
~ 14 events	3.9σ	local	2.3σ inclue	ding LEE	
CMS					
$M \simeq 760 \mathrm{GeV}$			narrow width favored		
~ 10 events	2.6σ	local	1.2σ inclue	ding LEE	

- No significant E_{Tmiss}, leptons or jets in the events
- No $\gamma \gamma$ resonance at 8 TeV but small upward fluctuation

$$\sigma(pp \to \gamma\gamma) \approx \begin{cases} (0.5 \pm 0.6) \,\text{fb} & \text{CMS} [2] & \sqrt{s} = 8 \,\text{TeV}, \\ (0.4 \pm 0.8) \,\text{fb} & \text{ATLAS} [3] & \sqrt{s} = 8 \,\text{TeV}, \\ (6 \pm 3) \,\text{fb} & \text{CMS} [1] & \sqrt{s} = 13 \,\text{TeV}, \\ (10 \pm 3) \,\text{fb} & \text{ATLAS} [1] & \sqrt{s} = 13 \,\text{TeV}. \end{cases}$$

$$\sigma(pp \to S \to \gamma \gamma) = \frac{2J+1}{M\Gamma s} \bigg[C_{gg} \Gamma(S \to gg) + \sum_{q} C_{q\bar{q}} \Gamma(S \to q\bar{q}) \bigg] \Gamma(S \to \gamma \gamma)$$

.

partonic distribution coeffs

\sqrt{s}	$C_{b\bar{b}}$	$C_{c\bar{c}}$	$C_{s\bar{s}}$	$C_{d\bar{d}}$	$C_{u ar{u}}$	C_{gg}
$8{ m TeV}$	1.07	2.7	7.2	89	158	174
$13{ m TeV}$	15.3	36	83	627	1054	2137

$$r = \frac{\sigma_{13 \,\text{TeV}}}{\sigma_{8 \,\text{TeV}}} = \frac{[C_{gg}/s]_{13 \,\text{TeV}}}{[C_{gg}/s]_{8 \,\text{TeV}}} - \frac{r_{b\bar{b}}}{5.4} - \frac{r_{c\bar{c}}}{5.4} - \frac{r_{s\bar{s}}}{6.1} - \frac{r_{d\bar{d}}}{4.3} - \frac{r_{u\bar{u}}}{2.5} - \frac{r_{gg}}{4.7}$$

$$\sigma(pp \to \gamma\gamma) \approx \begin{cases} (0.5 \pm 0.6) \,\text{fb} & \text{CMS} [2] & \sqrt{s} = 8 \,\text{TeV}, \\ (0.4 \pm 0.8) \,\text{fb} & \text{ATLAS} [3] & \sqrt{s} = 8 \,\text{TeV}, \\ (6 \pm 3) \,\text{fb} & \text{CMS} [1] & \sqrt{s} = 13 \,\text{TeV}, \\ (10 \pm 3) \,\text{fb} & \text{ATLAS} [1] & \sqrt{s} = 13 \,\text{TeV}. \end{cases}$$

 $r\simeq 5$ makes 8 TeV and 13 TeV mutually compatible

If large width true need extra decay channel $S \to f$ dominate

		if	$f S \to f$	f dom	in	ates
$\sigma($	$(pp \to S \to f)$	$\propto \frac{\Gamma_{gg}}{M} \frac{\Gamma_f}{\Gamma}$	$\frac{\Gamma_{gg}}{M}$		$\frac{\Gamma}{\Lambda}$	$\frac{\gamma\gamma}{M} \frac{\Gamma_{gg}}{M} \approx 6 \times 10^{-8} = \text{fixed}$
			$rac{\Gamma_{\gamma\gamma}}{M} \propto$	$\sigma(pp \rightarrow $	$\frac{1}{\cdot S}$	$\rightarrow f)$
	final	σ at	$\sqrt{s} = 8 \mathrm{Te}$	V		
	state f	observed	expected	ref.		
	$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[6,7]		
	$e^+e^-+\mu^+\mu^-$	< 1.2 fb	< 1.2 fb	[8]		
	$ au^+ au^-$	$< 12 {\rm ~fb}$	< 15 fb	[9]		
	$Z\gamma$	$< 4.0 { m ~fb}$	< 3.4 fb	[10]		
	ZZ	< 12 fb	$< 20 {\rm ~fb}$	[11]		Г
	Zh	$< 19 {\rm ~fb}$	$< 28 { m ~fb}$	[12]		$\frac{1}{\sqrt{\gamma}\gamma} \gtrsim 2 \times 10^{-3}$
(hh	$< 39 {\rm ~fb}$	< 42 fb	[13]		M
	W^+W^-	$< 40 {\rm ~fb}$	$< 70 {\rm ~fb}$	[14, 15]		
	$tar{t}$	$< 550 { m ~fb}$	-	[16]		$\Gamma_{\gamma\gamma}$
	invisible	< 0.8 pb	-	[17]		$\left \frac{1}{M} \gtrsim 2 \times 10^{-4} \right $
	$b\overline{b}$	$\lesssim 1\mathrm{pb}$	$\lesssim 1\mathrm{pb}$	[18]		
	jj	$\lesssim~2.5~{ m pb}$	-	[5]		

A taste of the necessary parameters

as a rule of thumb estimate correct also in composite models

$$\frac{\lambda}{M_{\Psi}} \to \frac{g_*}{m_*} \equiv \frac{1}{f} \qquad b_{3,Q} \sim N$$

Ex: η' in large N_c QCD

 $m_{\eta'} \sim \frac{1}{\sqrt{N}} m_* = \frac{g_*}{4\pi} m_* \ll m_*$

 $\sim N_c \frac{\alpha}{8\pi} \frac{1}{f_{\eta'}}$

 $f_{\eta'} \propto \sqrt{N_c}$

$$\frac{\Gamma_{gg}}{M} = 10^{-5} \times b_3^2 \left(\frac{M}{f}\right)^2 \qquad \qquad \frac{\Gamma_{\gamma\gamma}}{M} = 0.75 \times 10^{-8} \times b_Q^2 \left(\frac{M}{f}\right)^2$$

Assuming narrow width (dominated by gg): easy to explain

Ex: one vectorlike quark Q=5/3
$$\begin{bmatrix} b_3 = 1 \\ b_Q = 15 \end{bmatrix}$$
 $\begin{bmatrix} M \\ f \end{bmatrix} \sim 1$

Assuming
$$\Gamma = 45 \,\text{GeV} \times \eta$$

 Γ from $t\bar{t}$ or invisible \swarrow

$$\begin{bmatrix} b_3 \frac{M}{f} < 5 \\ b_Q \frac{M}{f} > 150 \sqrt{\eta} \end{bmatrix}$$

stretchedly compatible with composite model with $N \sim 10$ $(g_* \sim 3)$ $\eta < 0.1$ would give much more realistic numbers

Final Comments

- Naturalness: Symmetries & Selection Rules
- Natural Hierarchy (business as usual): new states *around* the weak scale
- Unnatural Hierarchy: history and a landscape enter particle physics

•cosmological constant: first blatant case of fine tuning

- •global symmetries : tuned SM structurally superior to its natural extensions
- •the neatest incarnations of naturalness have since long missed their appointment
- Well motivated model building remains our only way to give shape to the unknown and guide experimental searches
- But we just had a taste of how exciting is to be guided by experiments...