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The Renormalization Group

In perturbative QFT we have to regularise the divergences that occur in loop
diagrams.

Dimensional regularisation ⇒ Analytically continue the space-time to
d-dimensions. However, still need the action to be dimensionless [S ] = 0

Rescale coupling constant in such a way that it is dimensionless in d-dimensions
g → gµ

ε
2 , by doing this we need to introduce an arbitrary energy scale µ

Renormalization group theory postulates that one can change the arbitrary scale of
the theory in such a way that the physics on energy scales < µ remains constant.
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The Renormalization Group

Problem: Physical quantities cannot depend on arbitrary scales.

Resolution is via the renormalization group equation.

Take the bare Green’s function Γ0(n) = 〈φ0(p1) . . . φ0(pn)〉, clearly µ d
dµΓ0(n) = 0

But, Γ(n) are not unconnected as φ0 =
√
Zφφ ⇒ Γ0(n) = Z

n
2

φ Γ(n)

⇒ µ d
dµ

(
Z

n
2

φ Γ(n)

)
= 0

From this we can deduce

Callan-Symanzik Equation

0 =

[
µ
∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m
+

n

2

µ

Zφ

∂Zφ
∂µ

]
Γ(n)
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The Renormalization Group

Callan-Symanzik Equation

0 =

[
µ
∂
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+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m
+

n

2

µ

Zφ

∂Zφ
∂µ

]
Γ(n)

β(g) = µ
∂g

∂µ︸ ︷︷ ︸
β−function

γm(g) =
µ

m

∂m

∂µ︸ ︷︷ ︸
mass anomalous dimension

γφ(g) = µ
∂(ln(Zφ))

∂µ︸ ︷︷ ︸
wavefunction anomalous dimension

Every renormalization group function is scheme independent at its leading term.
The β-function is scheme independent to two loops in mass independent schemes
with only one coupling constant.

5 / 25



Renormalization Group Flows

In perturbation theory (In 4−dimensions),

β(g) = (d − 4)g + Ag2 + Bg3 + Cg4 + . . .

(A < 0⇐ QCD)

General property: There exists a value g∗ for which β(g∗) = 0, which are known
as fixed points. These underlie phase transitions.
The non-trivial fixed point in d−dimensions is known as the Wilson-Fisher fixed
point.

The conformal window is the range of Nf values for which the non-trivial fixed
point exists.

Example (QCD)

If we have β(g) = Ag2 + Bg3, g∗ = −A
B > 0

In QCD, A and B have opposite signs for 9 ≤ Nf ≤ 16 (Conformal window)
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Renormalization Group Flows
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Renormalization Group Flows

UV/IR stability: sending µ→∞ will send the RG flow to certain fixed points.
These will be UV stable. The fixed points where the flow diverges away from will
be UV unstable.
Reversing the flow direction (µ→ 0) will show the IR stable and unstable fixed
points.
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Critical Exponents

If the β−function has a nontrivial fixed point at the value g∗, then the
renormalization group functions evaluated at g∗ are termed critical exponents
which are thought to be renormalization group invariants.

Other critical exponents can also be found using scaling relations.

Critical exponents describe the behaviour of physical quantities near continuous
phase transitions.

ω = β′(g∗)︸ ︷︷ ︸
measure of corrections to scaling

η = γφ(g∗)

ρ = γψ̄ψ(g∗)︸ ︷︷ ︸
Quark mass anomalous dimension exponent

is of primary interest because of its relation to the definition of conformal theory
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Universality

One defines a universality class as a set of theories which differ only by irrelevant
parameters. In this case, the renormalization flows of these different theories all
lead to the same IR physics, defined by the set of relevant parameters, because a
modification to an irrelevant parameter will not have any consequence in the IR.

It ought to be possible to connect the fixed points in higher dimensional theories
with CFTs in lower dimensions, including d = 2. In d = 2, CFTs have been
classified. Since critical exponents are known exactly one could constrain the
exponent estimated and allow us to extract the behaviour across several
dimensions.
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Higher Dimensional Theories

Why higher dimensional?

Perturbative fixed points in higher
dimensions are connected to
non-perturbative fixed points in lower
dimensions. Possible to access these
non-perturbative fixed points through higher
dimensional theories perturbatively.

UV properties in one theory could be
regarded as being driven by the IR behaviour
of another.

Application to model building in higher
dimensions.
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Higher Dimensional Theories

Can build a tower of theories in the same
universality class

Same symmetry group

Renormalizable

One connecting interaction in all
theories (all other interactions are called
spectator interactions)

Check using large-N expansion of
critical exponents.

Similar towers of gauge theories should be
feasible, based on what has been found in
the scalar theory case. ⇒ Relevant to
possible directions of BSM physics.
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Higher Dimensional Theories

Examples:
Scalar - Connection of φ3 theory with O(N) φ4

theory in the dimension range 4 < d < 6 at the
Wilson-Fisher fixed point via the large N
expansion. Connection of φ4 theory with NLσM
in 2 < d < 4

In 6− 2ε and 4− 2ε dimensions: Weakly coupled
IR fixed points of the cubic and quartic scalar
theories. In 4 + 2ε and 2 + 2ε dimenions:
Weakly coupled UV fixed points of the O(N) φ4

and NLσM theories. Fei, Giombi, Klebanov
(2014) and Gracey (2015)

Gauge - May be able to access non-perturbative
fixed point in QCD from 6−dimensional QCD.
Colour confinement comes from
non-perturbative regime. Similar work in higher
dimensional QED. Giombi, Klebanov,
Tarnopolsky (2015) and Gracey (2015)
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Higher Dimensional Theories

Operators which are UV irrelevant may become IR relevant and dominate IR
dynamics.

∆O = A− Bε− Cε2 − Dε4 − . . .

(A,B,C ,D are some constants)

O continues to be relevant as ε is increased i.e. ε = 1 where d = 6− 2ε. Strongly
suggests that O is relevant for the entire range 4 ≤ d < 6
We may find operators in higher dimensions that continue to be relevant in lower
dimensions, thus potentially affecting the dynamics of that lower dimensional
theory.

Looking at higher dimensional gauge theories could give an insight into physics
beyond the standard model.
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O(N)× O(m) Landau-Ginzburg-Wilson Model in
d = 6− 2ε

L =
1

2
(∂φai )2 +

1

2
(∂σ)2 +

1

2
(∂T ij)2 +

1

2
g1σφ

aαφai +
1

2
g3T

ijφaiφaj

+
1

6
g2σ

3 +
1

2
g4σT

ijT ij +
1

6
g5T

ijT jkT ki

Renormalizable 6−dimensional scalar theory. Same symmetries as 4−dimensional
LGW model.
g1, g3 common interactions in both models, g2, g4, g5 are spectator
interactions.
T is an anti-symmetric (in O(m)) traceless field.

Number of Feynman Diagrams Calculated

φφ σσ TT φφσ φφT σσσ TTσ TTT
1-loop 2 3 3 4 5 3 4 5
2-loop 23 19 27 106 137 68 112 155
3-loop 514 343 589 - 4984 - - 5857
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O(N)× O(m) Landau-Ginzburg-Wilson Model in
d = 6− 2ε

Non-perturbative results: 4−dimensional non-trivial IR fixed point accessed
non-perturbatively using conformal bootstrap. Y. Nakayama, T. Ohtsuki (2014)

Motivation:

Conformal bootstrap proves there is an IR non-trivial fixed point we can
access from 6−dimensions.

Setting m = 1 gives us the cubic φ3 theory which connects to O(N) φ4

theory in 4 < d < 6.

To get a better understanding of the UV/IR duality.

Connects to 4−dim LGW theory, get a better picture of the whole
universality class.
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O(N)× O(m) Landau-Ginzburg-Wilson Model in
d = 6− 2ε

For Nf = 1000

ηφ = 0.00522536888758ε− 0.01866980955ε2 − 0.00135288754531ε3 +O(ε4)

ησ = 1.23233220028ε− 0.784699586777ε2 − 0.297110840137ε3 +O(ε4)

ηT = 2.08594109981ε− 0.258030086086ε2 + 0.191513285439ε3 +O(ε4)

For Nf = 1038

ηφ = 0.00502566263355ε− 0.0178970261282ε2 − 0.00153158065316ε3 +O(ε4)

ησ = 1.22189357673ε− 0.743934128955ε2 − 0.287120134262ε3 +O(ε4)

ηT = 2.0819067641ε− 0.242855351048ε2 + 0.179516633652ε3 +O(ε4)

For Nf = 1500

ηφ = 0.00343126422593ε− 0.0119102603797ε2 − 0.00220603234381ε3 +O(ε4)

ησ = 1.14508881058ε− 0.468203077985ε2 − 0.175398286746ε3 +O(ε4)

ηT = 2.05243914251ε− 0.142412681167ε2 + 0.105431668913ε3 +O(ε4)
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Banks-Zaks Fixed Point in QCD and Renormalization
Scheme Independence

We can also look at exact dimensions. Important for SUSY and toy models.

When one computes the critical exponents the expressions ought to be the same
at the Banks-Zaks fixed point for different renormalization schemes.
Critical exponents are physical quantities and hence renormalization scheme
invariant. Want to see if this is indicated in our calculations.

Landau gauge β−function in the scheme S defined by

βS
n (a, 0) =

n∑
r=1

βS
r a

r+1 (1)

Banks-Zaks fixed point aL at the Lth loop order defined as the first non-trivial
zero of

βS
L (aL, 0) = 0 (2)

J.A. Gracey, R.M. Simms (2015) Phys. Rev. D91 085037
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Critical exponent ω at the Banks-Zaks fixed point

ωL = 2β′L(aL, 0)
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Critical exponent ω at the Banks-Zaks fixed point

ωL = 2β′L(aL, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(aL, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(aL, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(aL, 0)
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Lattice

Five loop: P.A. Baikov, K.G. Chetyrkin & J.H. Kühn (2014)

Lattice: Cheng, Hasenfratz, Liu, Petropoulos & Schaich (2014). Lombardo, Miura, Nunes da Silva & Pallante (2014)
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Summary

Interest in higher dimensional QFT’s due in part to non-trivial fixed points in
4-dimensional theories.

UV properties in one theory could be regarded as being driven by the IR
behaviour of another.

Gauge theories with different symmetry groups could give an insight into the
theory believed to lie beyond the standard model. For instance,
SU(3)× SU(2)× U(1) may have a non-trivial fixed point which connects
with a unified theory.

Understanding the low energy Yang-Mills theory and QCD is a major goal.
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Thank you!
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