DY production of multi-Z's at the LHC

E. Accomando, D. Barducci, S. De Curtis, J. Fiaschi, S. Moretti, C.H. Shepherd-Themistocleous

School of Physics and Astronomy

15/01/2016

Juri Fiaschi

Overview

- Introduction: the state of art of DY production of neutral resonances
- Finite width and interference effects: single Z' scenario
- Phenomenology of multi-Z' models: the NUED and the 4DCHM
 - Search strategies and current limits
 - Finite width and interference effects: multi-Z' scenarios
 - > Exclusion and discovery limits for LHC Run-II

Conclusions

Current status

- Introduction: the state of art of DY production of neutral resonances
- Finite width and interference effects: single *Z*' scenario
- Phenomenology of multi-Z' models: the NUED and the 4DCHM
 - Search strategies and current limits
 - Finite width and interference effects: multi-Z' scenarios
 - Exclusion and discovery limits for LHC Run-II
- Conclusions

DY production of neutral resonance

Motivations:

Leptons in the final state are:

- Easy to detect
- Precise to measure
- Almost background-free

 $pp \rightarrow Z' \rightarrow I^+I^-$

CTEQ6L1 PDFs were used

Juri Fiaschi

The DY search

Single Z' bounds after Run-I

pp $\rightarrow \gamma$, Z, Z' \rightarrow ee, $\mu\mu$ with $|M(II)-M_{Z'}| < 5\% E_{coll}$

Begin of the search window for Run II

Accomando, Belyaev, JF, Mimasu, Moretti, Shepherd-Themistocleous arXiv:1503.02672

Juri Fiaschi

Projected Z' limits for Run-II

pp $\rightarrow \gamma$, Z, Z' \rightarrow ee, $\mu\mu$ with $|M(II)-M_{Z'}| < 5\% E_{coll}$

Search window in the Run II : 2.5 TeV < Mz' < 6.5 TeV

Accomando, Belyaev, JF, Mimasu, Moretti, Shepherd-Themistocleous arXiv:1503.02672

Juri Fiaschi

Finite width and interference

- Introduction: the state of art of DY production of neutral resonances
- Finite width and interference effects: single Z' scenario
- Phenomenology of multi-Z' models: the NUED and the 4DCHM
 - Search strategies and current limits
 - Finite width and interference effects: multi-Z' scenarios
 - Exclusion and discovery limits for LHC Run-II
- Conclusions

Finite width and interference

Finite width and interference

The FW approximation works if the integration interval do not include the <u>negative interference contribution</u>

The distance between the dip and the peak is <u>strongly dependent</u> by the model parameters

In the realistic <u>complete model</u> with a multi-Z' peaked structure, <u>deviations from NWA</u> are large

Again FW approach could be used for setting mass limits, choosing an <u>appropriate</u> integration interval.

Still it would fail in the analysis of the signal shape for profiling the new resonances in case of discovery.

Juri Fiaschi

The multi-Z' scenario

- Introduction: the state of art of DY production of neutral resonances
- Finite width and interference effects: single *Z*' scenario
- Phenomenology of multi-Z' models: the NUED and the 4DCHM
 - Search strategies and current limits
 - Finite width and interference effects: multi-Z' scenarios
 - > Exclusion and discovery limits for LHC Run-II
- Conclusions

The NUED

- Minimal version of the large Extra Dimensions class of models.
 - \rightarrow Only the EW SM gauge bosons are allowed to propagate in the EDs.
- Two energy scales determine the phenomenology:
 - → $M_s = I_s^{-1}$ → string length related (very high energy ~ M_{plank}).
 - → R^{-1} → related to the length of the extra dimensions compactified on a D-dimensional torus.
- We can decompose the higher-dimensional space as 3 + d $_{\parallel}$ + d $_{\perp}$
 - → 3 + d_{||} longitudinal dimension of the big brane that contains the 3D brane where the SM lives.
 - → d_{\perp} indicates the EDs which are felt by the gravity and are transverse to the big brane.
- The particle content of the model is:
 - → Gravitons: closed strings propagating in the whole space.
 - → SM fermions: localized on the 3D brane.
 - → SM gauge bosons: open strings propagating in the $(3 + d_{\parallel})$ brane.

Antoniadis, Benakli, Phys.Lett.B 326:69-78 1994, arXiv:9310151 [hep-th]

Juri Fiaschi

The NUED

• We consider the case of a 5D NUED model:

- \rightarrow D = d₁ = 1 and periodic boundary conditions on the compact direction.
- The states propagating in the (4+D)-dimensional space are seen from the 4D point of view as a tower of resonances with masses

$$M_{KK}^2 = m_0^2 + \frac{n^2}{R^2}$$

Antoniadis, Benakli, Quiros, Phys.Lett. B331:313-320, 1994, arXiv:9403290 [hep-ph]

- The localization of the fermions allows the direct production of KK resonances through $f\overline{f'} \rightarrow V^{(n)}_{\kappa\kappa}$ while VV $\rightarrow V^{(n)}_{\kappa\kappa}$ is forbidden.
 - → In the <u>NUED</u> all the SM gauge group can propagate in the 5D bulk space and therefore have KK excitations.
 - → In the <u>NUED(EW</u>) only the SU(2) ⊗U(1) EW gauge group can propagate in the compactified extra dimension and acquire KK excitations.
 - → The two scenarios do not differ in the purpose of our analysis.

Bella, Etzion, Hod, Oz, Silver, et al. JHEP, 1009, 025 (2010), arXiv:1004.2432 [hep-ex]

Juri Fiaschi

Phenomenology of NUED model

Phenomenology of NUED model

The 4DCHM

- The Higgs boson is a bound state arising from a strong dynamics.
 - \rightarrow The Higgs boson is a pseudo Nambu-Goldstone Boson.

- Higgs from a spontaneous breaking of $G \rightarrow H$
 - → The most studied in the literature is SO(5) / SO(4)

Agashe, Contino, Pomarol, Nucl. Phys. B719, 2005, 183

- The SO(5) / SO(4) coset:
 - → 4 Goldstone bosons to be identified with the SM ones.
 - Contains the SO(4) custodial symmetry to protect the parameter ρ .
 - → $SO(5) \rightarrow SO(4)$ at the TeV scale.
 - → Minimum number of degrees of freedom that give a correct Higgs potential.

- The gauge sector of the 4DCHM is described by two non linear $\sigma\text{-models}.$

- → The introduction of the covariant derivative makes the two models interact: $SO(5)_{L} \otimes SO(5)_{R} \rightarrow SO(5)_{L+R} \rightarrow SO(4)$
- → In addition there is an extra U(1) which crosses the SO(5).

Son and Stephanov, Phys. Rev. D69, 2004, 065020

Juri Fiaschi

The 4DCHM

- We can define an unitary gauge. The degrees of freedom are:
 - → 10+1+4 scalars provided by the two σ -models.
 - \rightarrow 10+1 give mass to the 5 neutral and 6 charged spin 1 physical states.
 - → The 4 left are identified with the SM Higgs sector d.o.f..
- We need to introduce a new fermionic sector to misalign the vacuum. The particle content of the model is:
 - → <u>5 Z'</u>
 - → 3 W'
 - → 2 T and 2 B quarks (with exotic charges)

Agashe et al., Nucl. Phys. B719, 2005, 165

- We will be interested in the phenomenology of the Z's. Brief recall of their properties:
 - → Only three of the five Z's interact with the SM fermions, thus they will be the only one producible at the LHC (Z₂, Z₃ and Z₅).
 - → First approximation two of them have mass equal to $m_{\rho} = f g_{\rho}$, while the other has mass equal to $\sqrt{2}m_{\rho}$.
 - → After the symmetries breaking, fine corrections to those masses arise proportional to $\xi = v^2 / f^2$ (degree of compositness).

Barducci, Belyaev, Brown, De Curtis, Moretti, Pruna, JHEP 1309 (2013) 047, arXiv:1302.2371 [hep-ph]

Juri Fiaschi

 $(M_{Z_2}$ –Dip) in resolution units

Juri Fiaschi

- Introduction: the state of art of DY production of neutral resonances
- Finite width and interference effects: single *Z*' scenario
- Phenomenology of multi-Z' models: the NUED and the 4DCHM
 - Search strategies and current limits
 - Finite width and interference effects: multi-Z' scenarios
 - Exclusion and discovery limits for LHC Run-II

Conclusions

- Our goal is to study the phenomenology of models with multiple vector neutral resonances.
- We have chosen to explore the ED and the 4DCHM models, as they provide a well motivated (from EWSB) framework for our purpose.
- The ED model provides a benchmark to study the case of <u>very degenerate</u> neutral resonances, where also the <u>interference effects are maximal</u>, due to the choice of the chiral couplings to the resonances.
 - > The degeneracy of the peaks lead to a <u>wide single peak</u>.
 - > The peak is preceded by a pronounced dip, due to the interplay of interference effects.
 - → In the invariant mass distribution, the <u>dip is far enough from the peak</u> that is possible to disentangle the two contributions.
 - NWA can be used to interpret experimentally excluded cross sections and therefore to set limits on the size of the compactified extra-dimension.
- We have exploited those features to compute the exclusion limits after Run-I and we have found a perfect agreement with the current bounds.
- Following this path we have been able to project <u>exclusion and discovery limits for the LHC</u> <u>Run-II</u>.

- In the 4DCHM we have more freedom in the choice of the model parameters. This lead to a very rich and variegated phenomenology.
- We have at first considered the case of a single Z' (single Z_3 boson), in order to check if the theoretical tools frequently used in the literature were appropriate in this framework:
 - > We have found that <u>Finite Width</u> effects are sizeable even for relatively narrow resonances $(\Gamma/M > 5\%)$.
 - > <u>Interference effects</u> also are sizeable and they can also shift the position of the peak.
 - The interpretation of excluded cross sections and the procedure of setting bounds on the Z' mass in general <u>cannot be performed though the simple NWA approach</u>.
- In the complete model (i.e. in the multiple Z' scenario) the invariant mass distribution profile appear strongly dependent on the choice of the parameters of the model:
 - > We can have a double peaked structure or a single degenerate peak.
- We have studied the effect of the detector smearing due to its finite resolution:
 - In the electron channel we have a good resolution (~ 1% M_{inv}), thus in large part of the parameter space of the model we still would be able to disentangle the two peaks.
 - In a post discovery stage, this channel will allow a <u>diagnostic analysis of the signal</u> (dip analysis).
 - In the muon channel we have a quite bad resolution (~ 9% M_{inv}) that forbids the detection of a multi peaked structure.
 - Still the good Acceptance x Efficiency factor makes this channel very important in the discovery stage to accumulate statistic.

Juri Fiaschi

- The interpretation of a signal of this kind <u>cannot be performed though a simple NWA approach</u>, <u>neither simply including FW effects</u>.
- The bounds we set in the parameter space of the model has been evaluated though an optimized procedure.
 - The integration interval has been chosen to <u>maximise</u> the contribution of the BSM signal, in order to reproduce as closely as possible the experimental analysis.
- In our future work we will focus on finding some simple functional forms that would allow the fitting of the negative interference contribution, in order to maximize our sensitivity in a context where a pronounced dip appear.

Thank you!

Juri Fiaschi

YTF 2016 - Durham

15/01/2016

Single Z'

Peak in the invariant mass distribution for the Z₃-boson

Juri Fiaschi

YTF 2016 - Durham

15/01/2016

Single Z'

Width of the Z₂ boson

Multiple Z'

Cross section distribution in the multiple Z' scenario

Here we have included the Z2-boson which is slightly lighter and less coupled to the fermions than the Z3

Sometimes is possible to <u>disentangle</u> two almost degenerate resonances

Sometimes this is not possible

Multiple Z'

Cross section predictions

Multiple Z'

Cross section distribution in the multiple Z' scenario

Sometimes is possible to disentangle two close resonances

Sometimes it is not