Muon g-2: data combination, fitting and systematic bias

Alex Keshavarzi

Supervisor: Dr. Thomas Teubner

University of Liverpool

a.i.keshavarzi@liverpool.ac.uk

YTF 8, Durham University

15^{th} January 2016

Overview

- Muon g-2: the basics
 - Motivation

2) Data combination & fitting: the f_k method

- Data combination
- The f_k method
- Systematic bias

Unbiased fitting: the R^I_m method The R^I_m method

- Results
 - $\bullet ~ e^+e^- \to \pi^+\pi^-$
 - Comparison with the f_k method
 - Conclusions

Motivation

The Standard Model (SM): an incomplete theory

- a_{μ} is one of the most precisely measured quantities in particle physics, accurate to 0.54ppm.
- BNL experiment revealed $a_{\mu}^{SM} < a_{\mu}^{exp}$ by approximately 3.3 standard deviations.
- Any deviation could herald the existence of as-yet-unknown new physics beyond the SM.
- Experiment 4x more accurate after the completion of g-2 experiment at Fermilab! \rightarrow if mean values stay and with no a_{μ}^{SM} improvement: $\rightarrow 5\sigma$ discrepancy

Motivation

The hadronic contribution

$$a_{\mu} = \frac{(g-2)}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{had} + a_{\mu}^{NewPhysics?}$$

Uncertainties from the hadronic sector completely dominate Δa_{μ}^{SM} !

- Most precise prediction by using e^+e^- hadronic cross section data and utilising a dispersion integral.

- Done at LO and NLO (see graphs)
- Now even at NNLO [Steinhauser et. al, PLB734(2014)114]

Of these, $a_{\mu}^{\text{had, VP LO}}$ has the largest uncertainty.

Motivation

Calculating a_{μ}^{had} : the basics

Use of data compilation for HVP:

pQCD not useful. Use the dispersion relation and the optical theorem.

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^+\pi^-$ channel: 73% of total $a_{\mu}^{had,LO}$ How to get the most precise σ^0_{had} ? e⁺e⁻ data:

- Low energies: sum ~ 25 exclusive channels, 2π, 3π, 4π, 5π, 6π, KK, KKπ, KKππ, ηπ, ..., use iso-spin relations for missing channels
- Above ~1.8 GeV: can start to use pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in vs): from many experiments, in different energy bins, errors from different sources, correlations; must avoid inconsistencies/bias
- σ^{0}_{had} means `bare' σ , but WITH FSR: RadCorrs [HLMNT: $\delta a_{\mu}^{had, RadCor VP+FSR} = 2 \times 10^{-10}$!]

Fitting global systematic normalisation uncertainties

- Hadronic cross sections σ_{had}^0 have to be combined and then fitted. \rightarrow requires statistically valid method!!
- Recent studies (arXiv:0912.2276,1507.02943) have shown that should experimental data include a global normalisation uncertainty, then the choice of fitting method can lead to systematic biases.
- It follows that we must:
- Review the existing fitting procedure is there the danger of biased results?
- Obtermine a new fit free from bias.
- Produce and compare results.

Combining & fitting data

- Combine the data in a given channel before integrating.
- Re-bin the data points into *energy clusters* (piecewise constant *R*).
- Use adaptive clustering algorithm to produce *target clusters*.
 - \rightarrow too small a cluster = precise data overwhelmed
 - \rightarrow too large a cluster = data missed about resonance peaks
- Weighted average for the cross section value R_m is given by

$$R_{m} = \left[\sum_{k} \sum_{i=1}^{N^{(k,m)}} \frac{R_{i}^{(k,m)}}{\left(\mathrm{d}\tilde{R}_{i}^{(k,m)}\right)^{2}}\right] \left[\sum_{k} \sum_{i=1}^{N^{(k,m)}} \frac{1}{\left(\mathrm{d}\tilde{R}_{i}^{(k,m)}\right)^{2}}\right]^{-1}$$

 \longrightarrow taken as initial values for fit parameters.

where

$$\mathrm{d}\tilde{R}_{i}^{\left(k,m\right)}=\sqrt{\left(\mathrm{d}R_{i}^{\left(k,m\right)}\right)^{2}+\left(\mathrm{d}f_{k}R_{i}^{\left(k,m\right)}\right)^{2}}$$

 $\longrightarrow df_k$ is the global normalisation uncertainty of experiment k.

Fitting: the f_k method

Fit data and minimise a non-linear χ²-function [HLMNT, 2012]
 → Two fitting parameters: initial cluster values R_m, normalisation factor f_k of each experiment k

$$\begin{split} \chi^2(R_m, f_k) &= \sum_{k=1}^{N_{exp}} \left\{ \left(\frac{1-f_k}{df_k} \right)^2 + \left[\sum_{m=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \left(\frac{R_i^{(k,m)} - f_k R_m}{dR_i^{(k,m)}} \right)^2 \right]_{\text{w/o cov. mat}} \right. \\ &+ \left[\sum_{m=1}^{N_{clu}} \sum_{n=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \sum_{j=1}^{N^{(k,m)}} \left(R_i^{(k,m)} - f_k R_m \right) C^{-1}(m_i, n_j) \left(R_j^{(k,n)} - f_k R_n \right) \right] \right\} \end{split}$$

The f_k 's are multiplicative re-normalisation factors for the data which vary as the χ^2 -function is minimised.

\rightarrow Penalty Trick Method!!

The origin of bias

$\begin{array}{l} \mbox{What is a biased result?} \\ \rightarrow D'Agostini \mbox{Bias} = \mbox{Fit favours more precise measurement.} \\ (DOI: 10.1016/0168-9002(94)90719-6) \\ \mbox{How do we include a global normalisation uncertainty whilst avoiding a } \\ D'Agostini bias? \end{array}$

 \longrightarrow Penalty Trick Method!!

Is the f_k method truly free from bias?

Alex Keshavarzi (UoL)

Muon g-2: systematic bias

Model data: a biased calculation of $a_{\mu}^{\mathsf{had, LOVP}}$

Consider two measurements: $R_i^{(k,m)}$ and $R_j^{(l,m)}$ with equal (uncorrelated) errors...

$$\mathrm{d}f_k = \mathrm{d}f_l \equiv \mathrm{d}f \ ; \ \mathrm{d}R_i^{(k,m)} = \mathrm{d}R_j^{(l,m)} \equiv \mathrm{d}R$$

Unbiased solution
$$\longrightarrow R_m = \bar{R}_m = \frac{1}{2} (R_i^{(k,m)} + R_j^{(l,m)})$$

Minimising w.r.t R_m and f_k and substituting, we find

$$R_m = \bar{R}_m (1 + \beta_m) \; ,$$

$$\begin{split} \beta_m &= \frac{1}{2\bar{R}_m^2(\mathsf{d}f)^2} \left(-(\mathsf{d}R)^2 - R_i^{(k,m)} R_j^{(l,m)} (\mathsf{d}f)^2 \right. \\ &+ \sqrt{4\bar{R}_m^4(\mathsf{d}f)^4 - 4\bar{R}_m^2 R_i^{(k,m)} R_j^{(l,m)} (\mathsf{d}f)^4 + \left(R_i^{(k,m)} R_j^{(l,m)} (\mathsf{d}f)^2 + (\mathsf{d}R)^2 \right)^2} \right) \end{split}$$

 $\Rightarrow \beta_m$ is the *bias contribution* to the cluster centre R_m .

(due to non-linear nature of χ^2 function)

Alex Keshavarzi (UoL)

Muon g-2: systematic bias

Model data: a biased calculation of $a_{\mu}^{had, LOVP}$

Fixing the covariance matrix

Covariance matrices defined incorrectly!

Covariance matrix dependence on normalisation uncertainties comes from measurements themselves.

- \rightarrow allows error propagation in the fit to skew the theory value!
- **1** Remove normalisation factors f_k and penalty term from penalty trick definition of χ^2 -function - Linear error function!
- 2 Remove any previous treatment of normalisation uncertainties from all covariance matrices.
- Six covariance matrices with normalisation uncertainties throughout fit choose to fix with guess value for cluster R_m^0 :

$$C_k(m_i, n_j) = \mathbf{c}_k(m_i, n_j) + (\mathsf{d}f_k)^2 R_m^0 R_n^0$$

New definition of our now linear χ^2 function:

$$\chi^{2}(R_{m}) = \sum_{m=1}^{N_{clu}} \sum_{n=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \sum_{j=1}^{N^{(k,m)}} \left(R_{i}^{(k,m)} - R_{m} \right) C_{k}^{-1}(m_{i}, n_{j}) \left(R_{j}^{(k,n)} - R_{n} \right)$$

Model data: a bias free example

Consider two measurements: $R_i^{(k,m)}$ and $R_j^{(l,m)}$ with equal (uncorrelated) errors...

$$\chi^{2}(R_{m}) = \sum_{i=1}^{N^{(k,m)}} \frac{(R_{i}^{(k,m)} - R_{m})^{2}}{(\mathsf{d}R_{i}^{(k,m)})^{2} + (\mathsf{d}f_{k})^{2}(R_{m}^{0})^{2}}$$

Minimising w.r.t R_m , we find

$$\begin{split} R_m &= \left[\sum_{i=1}^{N^{(k,m)}} \frac{R_i^{(k,m)}}{(\mathsf{d}R_i^{(k,m)})^2 + (\mathsf{d}f_k)^2 (R_m^0)^2}\right] \left[\sum_{i=1}^{N^{(k,m)}} \frac{1}{(\mathsf{d}R_i^{(k,m)})^2 + (\mathsf{d}f_k)^2 (R_m^0)^2}\right]^{-1} \\ &\qquad \mathsf{Reintroduce} \to \mathsf{d}f_k = \mathsf{d}f_l \equiv \mathsf{d}f \hspace{0.2cm} ; \hspace{0.2cm} \mathsf{d}R_i^{(k,m)} = \mathsf{d}R_j^{(l,m)} \equiv \mathsf{d}R \\ &\qquad \left(\mathsf{Unbiased \ solution} \longrightarrow R_m = \bar{R}_m = \frac{1}{N^{(k,m)}} \sum_{i=1}^{N^{(k,m)}} R_i^{(k,m)}\right) \\ &\qquad R_m = \left[\frac{R_i^{(k,m)} + R_j^{(l,m)}}{(\mathsf{d}R)^2 + (\mathsf{d}f)^2 (R_m^0)^2}\right] \left[\frac{2}{(\mathsf{d}R)^2 + (\mathsf{d}f)^2 (R_m^0)^2}\right]^{-1} = \frac{1}{2} (R_i^{(k,m)} + R_j^{(l,m)}) \end{split}$$

 \Rightarrow Fixing covariance matrix ensures unbiased solution!

Alex Keshavarzi (UoL)

Muon g-2: systematic bias

Model data: a bias free example

Alex Keshavarzi (UoL)

An iterated fit

Iterating the fit ensures an unbiased solution!

 \rightarrow Forces the fit to converge to an unbiased result.

$$\chi_1^2(R_m) = \sum_{m=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \sum_{j=1}^{N^{(k,m)}} \left(R_i^{(k,m)} - R_m \right) C_{k,0}^{-1}(m_i, n_j) \left(R_j^{(k,n)} - R_n \right) \\ C_{k,0}(m_i, n_j) = \mathbf{c}_k(m_i, n_j) + (\mathsf{d}f_k)^2 R_m^0 R_n^0$$

 \Rightarrow Feed the fitted R_m values into the next iteration...

$$\chi_2^2(R_m) = \sum_{m=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \sum_{j=1}^{N^{(k,m)}} \left(R_i^{(k,m)} - R_m \right) C_{k,1}^{-1}(m_i, n_j) \left(R_j^{(k,n)} - R_n \right)$$

$$C_{k,1}(m_i, n_j) = \mathbf{c}_k(m_i, n_j) + (\mathsf{d}f_k)^2 R_m^1 R_n^1$$

Repeat until fit converges and returns final fitted values for clusters, $R_m = R_m^I$.

The $\pi^+\pi^-$ channel

 $\pi^+\pi^-$ channel contributes to over 70% of $a_{\!\scriptscriptstyle \!\!\!\!\!\!\!\!\!\!\!\!\!}^{\rm had,\ {\rm LOVP}}$

- Consider real cluster with one measurement: $E_{cm}(\text{GeV}) = 0.4600, \ \sigma^0(\text{nb}) = 123.6418 \pm 22.4855 \Rightarrow R_m^0 = 123.6418$
- Experimental data includes three more measurements in different clusters.
 → Normalisation uncertainty provides weighting to cluster value through
 correlations.

Did the f_k method incur a bias?

Are previous results still reliable?

Compare f_k method and R_m^I method with only multiplicative normalisation uncertainties.

 \rightarrow If we see differences in mean value, then bias previously influenced the fit.

→ Previous results unreliable!

 \rightarrow If we see **no differences** in mean value, then bias did not influence fit (any change come from the inclusion of extra systematics).

→ Previous results reliable!

Example - $\pi^+\pi^-$ Set 1 - CMD-2(06) (0.7% Systematic Uncertainty), Set 2 - CMD-2(06) (0.8% Systematic Uncertainty), Set 3 - SND(04) (1.3% Systematic Uncertainty)

From $0.37 \rightarrow 0.97 \text{ GeV}$

Fit Method:	f_k Method		R_m^I Method		
Channel	a_{μ}	$\chi^2_{ m min}/ m d.o.f.$	a_{μ}	$\chi^2_{ m min}/ m d.o.f.$	Difference
$\pi^+\pi^-$	481.42 ± 4.26	1.10	481.43 ± 4.04	1.02	+0.01

Results for dominant hadronic channels

Comparative results	for the f_k	method and	the R_m^I	method:
---------------------	---------------	------------	-------------	---------

Fit Method:	f_k Method		R_m^I Method		
Channel	a_{μ}	$\chi^2_{\rm min}/{\rm d.o.f.}$	a_{μ}	$\chi^2_{\rm min}/{\rm d.o.f.}$	Difference
$\pi^{+}\pi^{-}$	505.77 ± 3.09	1.39	504.42 ± 2.24	1.35	-1.35
$\pi^{+}\pi^{-}\pi^{0}$	47.51 ± 0.98	3.04	47.47 ± 0.91	3.33	-0.04
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	20.73 ± 1.28	1.29	20.40 ± 1.16	1.16	-0.33
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	14.73 ± 0.48	1.81	14.49 ± 0.48	1.72	-0.24
$K^{+}K^{-}$	22.12 ± 0.41	1.95	22.08 ± 0.42	1.71	-0.04
$K_{s}^{0}K_{l}^{0}$	13.46 ± 0.17	1.10	13.46 ± 0.17	0.93	0.00
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	1.42 ± 0.09	1.21	1.38 ± 0.08	1.09	-0.04
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.30 ± 0.01	1.67	0.30 ± 0.01	1.52	0.00
Total:	626.04 ± 3.55		624.00 ± 2.76		-2.04

- Changes in almost each channel due to inclusion of extra systematics.
- Improved error estimate and goodness-of-fit.
- Much more statistically reliable and trustworthy method.
- Reduction in overall mean value would mean increased g 2 discrepancy, Δa_{μ} .

Conclusions

- Hadronic sector provides biggest uncertainty to $\Delta a_{\mu} = a_{\mu}^{\text{EXP}} a_{\mu}^{\text{SM}} \rightarrow \text{need statistically trustworthy method.}$
- Potential bias can occur through the fitting of experimental data due to global systematic normalisation uncertainties.
- Specifically, allowing normalisation uncertainties to vary as parameters in a fit can incur bias.
- Redefine our fit function so covariance matrices are fixed. Normalisation uncertainties are then not free to vary in the fit and thus cause a bias.
- Iterative fit procedure ensures convergence to correct solution.
- R_m^I method provides us with a trustworthy and much improved fitting method **BUT** previous results still reliable.
- Results show reduced mean value with improved uncertainty.

If Δa_{μ} is larger than originally thought, where is new physics...?

Thank You

a.i.keshavarzi@liverpool.ac.uk (alexkesh@liv.ac.uk)

https://www.linkedin.com/in/alexkesh