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Overview

@ Muon g-2: the basics
@ Motivation

© Data combination & fitting: the f, method
@ Data combination
@ The fi method
@ Systematic bias

© Unbiased fitting: the R, method
o The R! method

© Results
e cte” = tr™
@ Comparison with the fi method
@ Conclusions
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Metivation
The Standard Model (SM): an incomplete theory

@ a, is one of the most precisely measured quantities in particle physics,
accurate to 0.54ppm.

@ BNL experiment revealed aﬁM < ay'? by approximately 3.3 standard
deviations.

@ Any deviation could herald the existence of as-yet-unknown new
physics beyond the SM.

@ Experiment 4x more accurate
after the completion of g-2
experiment at Fermilab!

—if mean values stay and
with no aﬁM improvement:
— bHo discrepancy
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Muon g-2: the basics Motivation

The hadronic contribution

(g —2) QED , EW , _had , . NewPhysics?
=—F0—=a;  +a," ta, +a,

Uncertainties from the hadronic sector completely dominate AaﬁM!

ahad — abad.VP LO + azadTVP NLO + abad,Light—by—Light

i
LO NLO L-by-L
Y
had.
K Y M
had. had.

- Most precise prediction by using eTe™ hadronic cross section data and
utilising a dispersion integral.

- Done at LO and NLO (see graphs)

- Now even at NNLO [Steinhauser et. al, PLB734(2014)114]

Of these, azad' VPLO has the largest uncertainty.
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Muon g-2: the basics Motivation

Calculating a/’j“d: the basics

Use of data compilation for HVP: How to get the most precise 6?47 e'e” data:

¢ Low energies: sum ~ 25 exclusive channels,
L 2m, 3m, 4m, 57, 6, KK, KKm, KK, 0, ..,
had. . ) use iso-spin relations for missing channels
pQCD not useful. Use the dispersion

lati d th tical th .
relation an © optical theorem + Above ~1.8 GeV: can start to use pQCD

w.m J ﬂ_(s—qg— Im w.m (away from flavour thresholds),

had. supplemented by narrow resonances (J/W, Y)
‘".""_ > j;lcb |W‘| * Challenge of data combination (locally in Vs):
had. had. from many experiments, in different energy
bins, errors from different sources,
: ad,LO _ = 3/ ds () maa (5) correlations; must avoid inconsistencies/bias
* 0%,.4 means bare’ g, but WITH FSR: RadCorrs

[ HLMNT: éauhad, RadCor VP+FSR = ) x 1(-10 |]
o Weight function K(s)/s = O(1)/s
= Lower energies more important
= mtr~ channel: 73% of total a}*41©
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Muon g-2: the basics Motivation

Fitting global systematic normalisation uncertainties

@ Hadronic cross sections aﬂad have to be combined and then fitted.
— requires statistically valid method!!

@ Recent studies (arXiv:0912.2276,1507.02943) have shown that should
experimental data include a global normalisation uncertainty, then the
choice of fitting method can lead to systematic biases.

o |t follows that we must:

O Review the existing fitting procedure - is there the danger of
biased results?

@ Determine a new fit free from bias.
© Produce and compare results.
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PE G LT
Combining & fitting data

@ Combine the data in a given channel before integrating.
@ Re-bin the data points into energy clusters (piecewise constant R).

@ Use adaptive clustering algorithm to produce target clusters.
— too small a cluster = precise data overwhelmed
— too large a cluster = data missed about resonance peaks

@ Weighted average for the cross section value R,, is given by

-1
N(k,m)

fo = g ; (cu%f’“’““)2 Z Zl (dR(’““)

— taken as initial values for fit parameters.

AR — \/ (olR;’“”))2 + (dfkR}’”"))2

where

— df, is the global normalisation uncertainty of experiment k.
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UL
Fitting: the f; method

@ Fit data and minimise a non-linear x*-function [HLMNT, 2012]
— Two fitting parameters: initial cluster values R,,, normalisation factor fi of

each experiment k
tu N (M) k, 2
Sy ()
(k,m)
m=1 i=1 dR;
clu Nclu N(k ™) N(k )

Newp { 2
X (R, fr) = Z {( ;fkfk> +
1D > > (B = feRa) O (mayng) (R — fiRa)

k=1
m=1 n=1 1i=1 7j=1

w/o cov. mat

}

The fi's are multiplicative re-normalisation factors for the data which vary as the J

x2-function is minimised.

— Penalty Trick Method!!
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Data combination & fitting: the fi method Systematic bias
The origin of bias

What is a biased result?
— D’Agostini Bias = Fit favours more precise measurement.
(DOI: 10.1016/0168-9002(94)90719-6)
How do we include a global normalisation uncertainty whilst avoiding a
D’Agostini bias?

— Penalty Trick Method!!

PENALTY TERM

P Neap /1 | \ o N ’??”FzMAI-_/IfSS;:‘ FACTOR
B ;Z{( 7. ) {z > (#>
v k=1 \ / m=1 i=1

FIT PARAMETERS

w/o cov. mat

Is the f, method truly free from bias?
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Data combination & fitting: the fi method Systematic bias

Model data: a biased calculation of ap® -OVF

Consider two measurements: ng’m) and Rg-l’m) with equal (uncorrelated) errors...

dfe =dfi=df ; dR{™™ =dR!"™ =dR

D, 1 m m
Unbiased solution —+ Rm = Ry = Z(R{"™™ + R{"™)
Minimising w.r.t Ry, and fi and substituting, we find

2 (k,m) (l,m) 2
Brm 5 (- (dR)”™ — R;"™ R (df)

o 1
~ 2R2,(df)

— — 2
+ \/4R:1n (df) = 4R3RETRE™ (df)t + (RETRS™ (AF) + (dR)?) )

= [m is the bias contribution to the cluster centre R,,.
(due to non-linear nature of x? function)
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Systematic bias
Model data: a biased calculation of azad’ LOVP

R&™ =09and R™ =11 ; dRM™ =dR{"™ =dR =0

Rm
L0
1.05+
11’_ 4
A7 0.95
_______________ 0.9 Unbiased Result: Ry, = Ry, = 1
fx Method -------
1
0.5 1

0
15th January 2016

L
-1 -0.5
Logjldfy/dfj]
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Unbiased fitting: the R{” method The an method

Fixing the covariance matrix

Covariance matrices defined incorrectly!

Covariance matrix dependence on normalisation uncertainties comes from measurements
themselves.

— allows error propagation in the fit to skew the theory value!

@ Remove normalisation factors fi and penalty term from penalty trick definition of
x2-function - Linear error function!

@ Remove any previous treatment of normalisation uncertainties from all covariance
matrices.

© Fix covariance matrices with normalisation uncertainties throughout fit - choose to
fix with guess value for cluster R2,:

Ci(mi, n;) = cx(mi,n;) + (dfr)> Ry, R

New definition of our now linear x? function:

X () = (R = R ) €5 ) (R — )
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Unbiased fitting: the R{” method The R,In method

Model data: a bias free example
)

Consider two measurements: ng’m) and Rgl’m with equal (uncorrelated) errors...

N (k) 2

R; - Rm

Bl = Y s
im1 (dR;TY)2 + (dfk)?(RD,)?

Minimising w.r.t Ry,, we find

N(k,m) R(k’m) N (k,m) 1 -1
Rm:[ 2 Z H 2 )2]

@RS (@22 = WRP)2 4 (df)2(RY,

Reintroduce — dfy, =df; =df ; dREk’m) = dR;l’m) =dR

1 N(’Cam)
(Unbiased solution — Ry, = Ry = CED) Zl REk’m)>
i=

o — |: Rik,m) + R;l,m) :| l: 9 :|—1 _ l
(dR)2 + (df)?(RS,)? | | (dR)? + (df)? (RS, )? 2

= Fixing covariance matrix ensures unbiased solution!
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VL3 (T
Model data: a bias free example

=09and R{"™ =11 ; dR™™ =dR{"™ =dR=0

k
RE ,m)
Rm
L —
1.054
154
t///
095+
_________________ 0.9 Unbiased Result: Ry, = Ry, = 1
’ Ry, Method -------
1 J
0 0.5 1
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The R;, method
An iterated fit

lterating the fit ensures an unbiased solution!

— Forces the fit to converge to an unbiased result.

Ngjy N(Fsm) p(k,n)

X3 (Rm Z S (RP™ — RO (mi ) (R — Ry)
j=1

m=

-

Ch,o(mi, nj) = cx(mi,n;) + (dfe)’RY, Ry,

= Feed the fitted R,, values into the next iteration...

Neiw N(km) n(kn)
ST (B - Rm)o,;}(mi,nj)(R;k,m ~ R

i=1  j=1

3
I

Ch,1(mi, ng) = cx(mi,n;) + (dfe)’ R}, Ry,

Repeat until fit converges and returns final fitted values for clusters, Ry, = R{n.
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The 77~ channel

777~ channel contributes to over 70% of azad' LOVP

@ Consider real cluster with one measurement:
Eem(GeV) = 0.4600, 0°(nb) = 123.6418 4 22.4855 = RY, = 123.6418

@ Experimental data includes three more measurements in different clusters.
— Normalisation uncertainty provides weighting to cluster value through
correlations.

H I
Ueing fim method, |
f Method

R =130.3513 , 1200

H
1000 % E
i |

whereas, the fi; method returns

@
<3
S
T
L

R =130.8127 .

Oe*e” > n') [nb]
0
8
8
T

=
8
8
T
P
L

N

=1

S
T
L

0 L L ke "

0.96 0.98 1 1.02 1.04
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el L
Did the f; method incur a bias?

Are previous results still reliable?
Compare f method and an method with only multiplicative normalisation uncertainties.

— If we see differences in mean value, then bias previously influenced the fit.
— Previous results unreliable!

— If we see no differences in mean value, then bias did not influence fit (any change come from
the inclusion of extra systematics).
— Previous results reliable!

Example - mt 7~
Set 1 - CMD-2(06) (0.7% Systematic Uncertainty), Set 2 - CMD-2(06) (0.8% Systematic
Uncertainty), Set 3 - SND(04) (1.3% Systematic Uncertainty)

From 0.37 — 0.97 GeV

Fit Method: fr Method R Method
Channel ay X2, /d.of. ay x2.,/d.o.f. | Difference
P 481.42 +4.26 1.10 481.43 +4.04 1.02 +0.01
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Comparison with the f;. method
Results for dominant hadronic channels

Comparative results for the fr method and the RZ, method:

Fit Method: fr Method Rin Method

Channel ay Xa/d-of. ay Xa/d-of. Difference
P 505.77 + 3.09 1.39 504.42 + 2.24 1.35 -1.35
rt a0 47.51 4 0.98 3.04 47.47 £0.91 3.33 -0.04
rtr = x0x0 20.73 4+ 1.28 1.29 20.40 4+ 1.16 1.16 -0.33
rtrxtr— 14.73 £ 0.48 1.81 14.49 + 0.48 1.72 -0.24
KtK— 22.12 + 0.41 1.95 22.08 + 0.42 1.71 -0.04
KK 13.46 £ 0.17 1.10 13.46 £ 0.17 0.93 0.00
B 1.42 4 0.09 1.21 1.38 +0.08 1.09 -0.04
atr atrats 0.30 £ 0.01 1.67 0.30 £ 0.01 1.52 0.00
Total: 626.04 £ 3.55 624.00 £ 2.76 2,04

Changes in almost each channel due to inclusion of extra systematics.

Improved error estimate and goodness-of-fit.

Much more statistically reliable and trustworthy method.

Reduction in overall mean value would mean increased g — 2 discrepancy, Aay,.
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Conclusions

@ Hadronic sector provides biggest uncertainty to Aa, =
trustworthy method.

aEXP — aZM — need statistically

@ Potential bias can occur through the fitting of experimental data due to global systematic
normalisation uncertainties.

@ Specifically, allowing normalisation uncertainties to vary as parameters in a fit can incur
bias.

@ Redefine our fit function so covariance matrices are fixed. Normalisation uncertainties are
then not free to vary in the fit and thus cause a bias.

@ |Iterative fit procedure ensures convergence to correct solution.

@ RI method provides us with a trustworthy and much improved fitting method BUT
previous results still reliable.

@ Results show reduced mean value with improved uncertainty.

If Aa, is larger than originally thought, where is new
physics...?
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Thank You

a.i.keshavarzi®@liverpool.ac.uk
(alexkesh@liv.ac.uk)

https://www.linkedin.com/in/alexkesh
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