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Not a typo: fluids not fields



Does ∃ a consistent quantum theory of a (perfect,
compressible) fluid?



Classical fluids ⊂ classical fields, so:
I quantization an obvious thing to do,
I but isn’t it trivial?



SHO: L = q̇2 +q2 =⇒ E = n+ 1
2 ,n ∈ Z+





Fluids are special: ∃ vortices



Homework exercise: carry out an experiment . . .



L = q̇2 +0q2 =⇒ E = p2,p ∈ R



L = q̇2 =⇒ E = p2,p ∈ R:
I no Fock space
I no S-matrix
I ground state delocalized
I perturbation theory inconceivable



Historical approaches . . .





Landau 1941: Assume vortices ‘gapped’ =⇒ superfluid





Rattazzi et al. 2011: vortex sound speed ε → 0
Endlich, Nicolis, Rattazzi, & Wang, 1011.6396



L = q̇2 + εq2 =⇒ E = ε(n+ 1
2),n ∈ Z+



Everything blows up.
I Conjecture: quantum fluid inconsistent
I Evidence: no fluids at T=0

Endlich, Nicolis, Rattazzi, & Wang, 1011.6396



We claim:
I Conjecture: quantum fluid consistent
I Evidence: computation!
I Also conjecture: quantum fluids unlike classical ones



Why you may care . . .



1. T → 0 limit of normal fluids?
2. Historical successes of quantizing classical fields.
3. An elegant, consistent, & rich QFT



Elegance: We quantize t-dependent diffs Md →Md , with
ISO(d ,1)×SDiff(Md) invariant action



Richness: ⊃ all classical fluid phenomena!



Consistency: We do not seek a ToE, but rather an EFT
I Non-renormalizable
I Regime in which divergences under control
I Perturbation theory ‘converges’



Outline

I Fluid parameterization
I The classical theory of fluids
I The quantum theory of fluids



Fluid parameterization



I ‘Bathtub’ Md (e.g. Rd )
I Choose coordinates φ at t = 0 for fluid particles
I xt(φ) is map Md →Md (Lagrange)



I Claim: cavitation and interpenetration cost finite E
I At low enough E , xt(φ) is bijective
I Ditto φt(x) (Euler)
I Claim: at large distance φ may be assumed smooth



I How to parameterize the group Diff(M)?
I Naïve exp map: TM → Diff(M)

I But Diff(M) is not Lie
I exp may not exist (counterexample: R)
I exp may not be locally onto (counterexample: S1)
I I am (at best) a physicist, so am allowed to just write

φ = x +π



(



expπ = x +π +π(∂π)+
1
2!π(∂π(∂π))+ . . .



)



Md = Rd henceforth



The classical theory of fluids



No one ever writes down the action!



In fact very elegant:
I Fields φ(x , t)
I S invariant under Poincaré transformations on x
I and sdiffs of φ

I =⇒ L =−w0f (
√

B), where B = det ∂µφ i∂ µφ j .
Endlich, Nicolis, Rattazzi, & Wang, 1011.6396

Herglotz, 1911

Soper, Classical Field Theory, 2008



Then find
I Tµν = (ρ +p)uµuν +pηµν is conserved
I ρ = w0f
I p = w0(

√
Bf ′− f )

I uµ = 1
2
√

B
εµαβ εij∂αφ i∂β φ j . (d = 2)

Endlich, Nicolis, Rattazzi, & Wang, 1011.6396

Herglotz, 1911

Soper, Classical Field Theory, 2008



d=2 henceforth
(mostly)



The quantum theory of fluids . . .



Consider small fluctuations about the classical vacuum:
φ = x +π . . .

2

where the expansion appears to be valid. We speculate
briefly on the implications in §V.

II. FLUID PARAMETERIZATION

We begin by discussing how to parameterize a fluid
and its dynamics. In the eulerian frame, a fluid is a
time-dependent map �i(xj , t) from some space manifold
M (which we take to be R2) into itself. We suppose that
cavitation or interpenetration of the fluid costs finite en-
ergy and may be ignored in our EFT description, such
that � is 1-to-1 and onto. Moreover, we assert that, by
altering � at short distances, we can make it and its in-
verse smooth [7], such that � is a di↵eomorphism, and
the configuration space of the fluid is the di↵eomorphism
group Di↵(M). We thus seek a parameterization of this
group. Di↵(M) is infinite-dimensional and so is not a
Lie group in the usual sense; the exponential map does
not necessarily exist for non-compact M , and even for
compact M it may not be locally-onto (indeed, Di↵(R)
and Di↵(S1) are respective counterexamples [8]). So, us-
ing the näıve exponential map given in [4] (which can be

written as �(x) = x + ⇡ + 1
2!⇡ · @⇡ + 1

3!⇡ · @(⇡ · @⇡) + . . . )
is not necessarily adequate, even for small fluctuations.
We therefore use the simple parameterization � = x + ⇡
(where x is the identity map on M) and hope that all
of the aforementioned demons are of measure zero in the
path integral.

As for the dynamics, to have any chance of a quantum
description requires non-dissipative behaviour, so we as-
sume the fluid to be perfect [9]. The corresponding action
has been known for a long time [10]. It is most easily de-
rived by requiring [4] that the theory be invariant under
Poincaré transformations of x [11] and area-preserving
di↵eomorphisms of �. In 2+1-d, the lagrangian is L =
�w0f(

p
B), where B = det @µ�

i@µ�j , f is any function
s. t. f 0(1) = 1, and w0 sets the overall dimension. Our
metric is mostly-plus and ~ and the speed of light are
set to unity. One may easily check that conservation of
the energy-momentum tensor, Tµ⌫ = (⇢+p)uµu⌫ +p⌘µ⌫ ,
(which for a fluid is equivalent to the Euler-Lagrange

equations [12]) holds with ⇢ = w0f , p = w0(
p

Bf 0 � f),
and uµ = 1

2
p

B
✏µ↵�✏ij@↵�

i@��
j . In terms of �i = xi +⇡i,

we have

L =
1

2
(⇡̇2 � c2[@⇡]2) � (3c2 + f3)

6
[@⇡]3 +

c2

2
[@⇡][@⇡2] +

(c2 + 1)

2
[@⇡]⇡̇2 � ⇡̇ · @⇡ · ⇡̇ � (f4 + 3c2 + 6f3)

24
[@⇡]4

+
(c2 + f3)

4
[@⇡]2[@⇡2]�c2

8
[@⇡2]2+

(1 � c2)

8
⇡̇4�c2[@⇡]⇡̇·@⇡·⇡̇� (1 � 3c2 � f3)

4
[@⇡]2⇡̇2+

(1 � c2)

4
[@⇡2]⇡̇2+

1

2
⇡̇·@⇡·@⇡T ·⇡̇+. . . ,

(1)

where fn ⌘ dnf/d
p

B
n|B=1, c ⌘ p

f2 is the speed of
sound, and [@⇡] is the trace of the matrix @i⇡j , &c. The
obstruction to quantization is now evident: fields ⇡ with
[@⇡] = 0, corresponding to transverse fluctuations (or in-
finitesimal vortices), have no gradient energy, and corre-
spond to quantum-mechanical free particles, rather than
harmonic oscillators. Thus, the energy eigenvalues are
continuous and there can be no particle intepretation via
Fock space. Even worse, the ground state is completely
delocalized in ⇡, meaning that quantum fluctuations
sample field configurations where the interactions are ar-
bitrarily large. It thus appears that perturbation theory
is hopeless! From the path-integral point of view, these
di�culties translate into the statement that the space-
time propagator for transverse modes is ill-defined, since
it contains the Fourier transform

R
d!ei!t/!2, which di-

verges in the IR.

III. INFRA-RED BEHAVIOUR

Just as for gauge theories and 2-d sigma models [13–
18], the IR divergences cancel when we restrict to cor-

relators of invariants under SDi↵(M), such as ⇢, p, and
ui[19]. We can check the cancellation order-by-order in
1/w0 (which is equivalent to the usual ~ expansion of
QFT) or indeed in any other parameter.

For the 2-point correlators at O(w�1
0 ), the observables

can be expressed in terms of [@⇡] and ⇡̇, whose correlators
are

h[@⇡][@⇡]i =
ik2

!2 � c2k2
,

h⇡̇i[@⇡]i =
i!ki

!2 � c2k2
,

h⇡̇i⇡̇ji = i�ij +
ic2kikj

!2 � c2k2
. (2)

The only poles are at ! = ck and the disappearance
of poles at ! = 0 implies that the spacetime Fourier
transforms are well-defined.

To check for cancellations of IR divergences at higher
order in w�1

0 , it is convenient to consider the invariants

p
Bu0 � 1 = [@⇡] +

1

2
([@⇡]2 � [@⇡2]),

p
Bui = ⇡̇i + [@⇡]⇡̇i � ⇡̇j@j⇡

i, (3)
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where fn ⌘ dnf/d
p

B
n|B=1, c ⌘ p

f2 is the speed of
sound, and [@⇡] is the trace of the matrix @i⇡j , &c. The
obstruction to quantization is now evident: fields ⇡ with
[@⇡] = 0, corresponding to transverse fluctuations (or in-
finitesimal vortices), have no gradient energy, and corre-
spond to quantum-mechanical free particles, rather than
harmonic oscillators. Thus, the energy eigenvalues are
continuous and there can be no particle intepretation via
Fock space. Even worse, the ground state is completely
delocalized in ⇡, meaning that quantum fluctuations
sample field configurations where the interactions are ar-
bitrarily large. It thus appears that perturbation theory
is hopeless! From the path-integral point of view, these
di�culties translate into the statement that the space-
time propagator for transverse modes is ill-defined, since
it contains the Fourier transform

R
d!ei!t/!2, which di-

verges in the IR.

III. INFRA-RED BEHAVIOUR

Just as for gauge theories and 2-d sigma models [13–
18], the IR divergences cancel when we restrict to cor-

relators of invariants under SDi↵(M), such as ⇢, p, and
ui[19]. We can check the cancellation order-by-order in
1/w0 (which is equivalent to the usual ~ expansion of
QFT) or indeed in any other parameter.

For the 2-point correlators at O(w�1
0 ), the observables

can be expressed in terms of [@⇡] and ⇡̇, whose correlators
are

h[@⇡][@⇡]i =
ik2

!2 � c2k2
,

h⇡̇i[@⇡]i =
i!ki

!2 � c2k2
,

h⇡̇i⇡̇ji = i�ij +
ic2kikj

!2 � c2k2
. (2)

The only poles are at ! = ck and the disappearance
of poles at ! = 0 implies that the spacetime Fourier
transforms are well-defined.

To check for cancellations of IR divergences at higher
order in w�1

0 , it is convenient to consider the invariants

p
Bu0 � 1 = [@⇡] +

1

2
([@⇡]2 � [@⇡2]),

p
Bui = ⇡̇i + [@⇡]⇡̇i � ⇡̇j@j⇡

i, (3)

I a mess
I derivatively coupled: goldstone bosons
I Poincaré non-linearly realized
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B
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ik2

!2 � c2k2
,
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p
Bu0 � 1 = [@⇡] +

1

2
([@⇡]2 � [@⇡2]),

p
Bui = ⇡̇i + [@⇡]⇡̇i � ⇡̇j@j⇡

i, (3)

I c =
√

f2 is speed of sound for [∂π] 6= 0
I [∂π] = 0 =⇒ gapless vortex modes
I Free particles, not harmonic oscillators!
I No ‘easy’ way out: [∂π] = 0 =⇒ only π̇ terms



free particles =⇒
I no Fock space
I no S-matrix
I no perturbation theory



Correlators in d space dimensions:
I 〈πL(x)πL(0)〉=

∫
dωddk ei(ωt−k ·x)

ω2−c2k2 = good

I 〈πT (x)πT (0)〉=
∫

dωddk ei(ωt−k ·x)

ω2 = evil



φ is not physical
sdiffs are a redundancy



cf.
I gauge theories
I 2d sigma models

Jevicki 77

McKane & Stone 80

David 80, 81

Elitzur 83



Remark: Tµν ,ρ,p, and uµ are all sdiff invariants



Let’s compute some correlators of invariants, and see what we
get . . .



Not p,ρ, . . . , but
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ui[19]. We can check the cancellation order-by-order in
1/w0 (which is equivalent to the usual ~ expansion of
QFT) or indeed in any other parameter.

For the 2-point correlators at O(w�1
0 ), the observables

can be expressed in terms of [@⇡] and ⇡̇, whose correlators
are
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The only poles are at ! = ck and the disappearance
of poles at ! = 0 implies that the spacetime Fourier
transforms are well-defined.

To check for cancellations of IR divergences at higher
order in w�1

0 , it is convenient to consider the invariants
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where the expansion appears to be valid. We speculate
briefly on the implications in §V.

II. FLUID PARAMETERIZATION
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f2 is the speed of
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since (in 2+1-d) they contain terms of at most quadratic
order in ⇡. Consider, for example, the 3-point correlator

h
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Bu0(0, 0)� 1)i at O(w�2
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connected with respect to the three observables. The four
contributing diagrams and their divergent pieces are:
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where (ka,!a), a 2 {1, 2} are the Fourier conjugates of
(xa, ta), !3 = !1 + !2, &c. We define the transverse

projector by T ij
a ⌘ �ij � ki

akj
a

k2
a

. Groups of ks or T s in

brackets have their indices contracted. It is clear that,
by expansion about small !2,

1
!2

3�c2k2
3

= 1
!2

1�c2k2
3
+O(!2)

and the above poles at !2 = 0 cancel. By symmetry, the
same is true for !1.

One may similarly show that divergences cancel in all
3-point correlators of the observables in (3). We have
also checked several 4-point tree-level correlators.

IV. ULTRA-VIOLET BEHAVIOUR

We now turn to loop diagrams. Consider, for exam-
ple, the 2-point function of

p
Bu0 � 1 at O(w�2

0 ). The
diagrams, shown in Fig. 1, feature both IR and UV diver-
gences, which we regularize by computing the integrals
in D = 1+2✏ time- and d = 2+2✏ space-dimensions. We
wish to show that the UV divergences can be absorbed
in higher order counterterms and that the expansion in
energy and momenta is valid in some non-vanishing re-
gion.

It is here that the advantage of working in 2 + 1-d be-
comes clear: If the theory is to be consistent, the sum
of the individually divergent diagrams in Fig. 1 must
be finite as ✏ ! 0, because there can be no countert-
erms! This follows from simple dimensional analysis: the
Feynman rules that follow from (1) imply that the 1-loop
diagrams must contain 3 more powers of energy or mo-
mentum than the tree-level diagrams. Now, since the
correlator can only be a function of K2 (where icK ⌘ !)
and k2 (by time-reversal and rotation invariance, respec-
tively), the 1-loop contribution necessarily contains rad-
icals of K2 and k2. But higher order counterterms can
only yield tree-level contributions that are rational func-
tions of K2 and k2 and so cannot absorb divergences in
the 1-loop contribution.

To do the computation, we use integration-by-parts

FIG. 1. The O(w�2
0 ) diagrams for the correlator h(

p
Bu0 �

1)(
p

Bu0 � 1)i.

identities obtained using AIR [20] to reduce the various
loop integrals to a set of 9 master integrals, listed in Ta-
ble I. All but the last 2 of these can be evaluated directly,
in terms of Gamma or Hypergeometric functions. For the
remaining 2, we proceed by deriving a first-order ODE
for each integral’s dependence on K2 and solving order-
by-order in ✏. All the integrals were checked numerically
in dimensions where they are finite. Substituting in the
loop amplitude using FORM [21], we obtain

9Kk6(1 + c4)

64(K2 + k2)2
� k4

1024c4(K2 + k2)
5
2

⇥
h
c4(1 � c2)2(19k4 � 4K2k2 + K4)

�2f3c
2(1+c2)k2(5k2+14K2)+f2

3 (3k4+8K2k2+8K4)
i
,

which is indeed finite, as consistency demands. Moreover,
there are no poles at K = 0 and the Fourier transform is
well defined.

Finally, we estimate the region of validity of the EFT
expansion in energy-momentum, by comparing the ab-
solute values of the tree-level and 1-loop results. Our
estimate depends, of course, on the values of the O(1)
coe�cients c2 and f3, and we present results for typical
values (in units of the overall scale w0) in Fig. 2. It should
be borne in mind that this really constitutes only a rough
upper bound on the region of validity; in particular, we
expect that comparison of other diagrams will indicate
that the EFT is not valid at arbitrarily large energy, for

Many delicate cancellations
Real space correlators all exist
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where (ka,!a), a 2 {1, 2} are the Fourier conjugates of
(xa, ta), !3 = !1 + !2, &c. We define the transverse
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One may similarly show that divergences cancel in all
3-point correlators of the observables in (3). We have
also checked several 4-point tree-level correlators.
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We now turn to loop diagrams. Consider, for exam-
ple, the 2-point function of
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diagrams, shown in Fig. 1, feature both IR and UV diver-
gences, which we regularize by computing the integrals
in D = 1+2✏ time- and d = 2+2✏ space-dimensions. We
wish to show that the UV divergences can be absorbed
in higher order counterterms and that the expansion in
energy and momenta is valid in some non-vanishing re-
gion.

It is here that the advantage of working in 2 + 1-d be-
comes clear: If the theory is to be consistent, the sum
of the individually divergent diagrams in Fig. 1 must
be finite as ✏ ! 0, because there can be no countert-
erms! This follows from simple dimensional analysis: the
Feynman rules that follow from (1) imply that the 1-loop
diagrams must contain 3 more powers of energy or mo-
mentum than the tree-level diagrams. Now, since the
correlator can only be a function of K2 (where icK ⌘ !)
and k2 (by time-reversal and rotation invariance, respec-
tively), the 1-loop contribution necessarily contains rad-
icals of K2 and k2. But higher order counterterms can
only yield tree-level contributions that are rational func-
tions of K2 and k2 and so cannot absorb divergences in
the 1-loop contribution.

To do the computation, we use integration-by-parts
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identities obtained using AIR [20] to reduce the various
loop integrals to a set of 9 master integrals, listed in Ta-
ble I. All but the last 2 of these can be evaluated directly,
in terms of Gamma or Hypergeometric functions. For the
remaining 2, we proceed by deriving a first-order ODE
for each integral’s dependence on K2 and solving order-
by-order in ✏. All the integrals were checked numerically
in dimensions where they are finite. Substituting in the
loop amplitude using FORM [21], we obtain

9Kk6(1 + c4)

64(K2 + k2)2
� k4

1024c4(K2 + k2)
5
2

⇥
h
c4(1 � c2)2(19k4 � 4K2k2 + K4)

�2f3c
2(1+c2)k2(5k2+14K2)+f2

3 (3k4+8K2k2+8K4)
i
,

which is indeed finite, as consistency demands. Moreover,
there are no poles at K = 0 and the Fourier transform is
well defined.

Finally, we estimate the region of validity of the EFT
expansion in energy-momentum, by comparing the ab-
solute values of the tree-level and 1-loop results. Our
estimate depends, of course, on the values of the O(1)
coe�cients c2 and f3, and we present results for typical
values (in units of the overall scale w0) in Fig. 2. It should
be borne in mind that this really constitutes only a rough
upper bound on the region of validity; in particular, we
expect that comparison of other diagrams will indicate
that the EFT is not valid at arbitrarily large energy, for

I Vertex factor w0

I Propagator factor 1
w0

I 4 diagrams; 100s of contributions
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TABLE I. Master integrals for the 1-loop, 2-point correlator with external momentum k and euclidean energy K, dimensionally
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FIG. 2. Contours of equal 1-loop and tree-level abso-
lute contributions to the momentum-space 2-point correlator
h(
p

Bu0 � 1)(
p

Bu0 � 1)i, for various O(1) values of c and f3.

small enough momentum (and vice versa), as the Figure
suggests.

V. DISCUSSION

Our results are a strong hint that there exists a consis-
tent quantum theory of fluids. If so, it is of great interest

to explore the physical predictions of the theory, and to
see whether they are realized in real-world systems. We
can already draw some inferences from the results de-
rived here. The first of these is that Lorentz invariance
is non-linearly realized in the quantum vacuum, just as
it is in a classical fluid. This follows immediately from
the occurrence of poles at ! = ck in the 2-point correla-
tors (2). Furthermore, the linearly realized symmetries
appear to be the same in the quantum theory as in the
classical theory, viz. the diagonal euclidean subgroup of
Poincaré⇥SDi↵. The second is that vortex modes ap-
parently do not propagate, in the sense that they do not
appear as poles in correlators of observables. In hindsight
this is no surprise, since propagating vortices would im-
ply IR divergences. We stress, though, that the absence
of vortex modes does not mean that our fluid EFT is
nothing but a complicated reformulation of a superfluid.
Indeed, it is already known that a superfluid and an or-
dinary fluid are inequivalent at ~ = 0 (although they are
equivalent if there is no vorticity) [22], and it follows by
continuity that fluids and superfluids must be inequiva-
lent in general at ~ 6= 0. It is tempting to conjecture,
however, that both the conservation of vorticity and the
equivalence between the zero-vorticity fluid and the su-
perfluid are preserved at the quantum level; if so, we
must look to quantum fluids with non-vanishing vortic-
ity in order to see a departure from superfluid behaviour.
One possible arena would be the study of the quanta cor-
responding to Kelvin waves [23], viz. low-energy pertur-
bations of vortex lines [24], for which ‘Thomsons’ is the
obvious moniker. More generally, it would be of inter-
est to explore the quantum version of any of the myriad
phenomena of classical fluids: surface waves, turbulence,
shocks, &c.

Where can we hope to observe such phenomena? Clas-
sical fluid behaviour is typically observed in underlying
systems that are in local thermodynamic equilibrium at
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where (ka,!a), a 2 {1, 2} are the Fourier conjugates of
(xa, ta), !3 = !1 + !2, &c. We define the transverse
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same is true for !1.

One may similarly show that divergences cancel in all
3-point correlators of the observables in (3). We have
also checked several 4-point tree-level correlators.

IV. ULTRA-VIOLET BEHAVIOUR

We now turn to loop diagrams. Consider, for exam-
ple, the 2-point function of

p
Bu0 � 1 at O(w�2

0 ). The
diagrams, shown in Fig. 1, feature both IR and UV diver-
gences, which we regularize by computing the integrals
in D = 1+2✏ time- and d = 2+2✏ space-dimensions. We
wish to show that the UV divergences can be absorbed
in higher order counterterms and that the expansion in
energy and momenta is valid in some non-vanishing re-
gion.

It is here that the advantage of working in 2 + 1-d be-
comes clear: If the theory is to be consistent, the sum
of the individually divergent diagrams in Fig. 1 must
be finite as ✏ ! 0, because there can be no countert-
erms! This follows from simple dimensional analysis: the
Feynman rules that follow from (1) imply that the 1-loop
diagrams must contain 3 more powers of energy or mo-
mentum than the tree-level diagrams. Now, since the
correlator can only be a function of K2 (where icK ⌘ !)
and k2 (by time-reversal and rotation invariance, respec-
tively), the 1-loop contribution necessarily contains rad-
icals of K2 and k2. But higher order counterterms can
only yield tree-level contributions that are rational func-
tions of K2 and k2 and so cannot absorb divergences in
the 1-loop contribution.

To do the computation, we use integration-by-parts

FIG. 1. The O(w�2
0 ) diagrams for the correlator h(

p
Bu0 �

1)(
p

Bu0 � 1)i.

identities obtained using AIR [20] to reduce the various
loop integrals to a set of 9 master integrals, listed in Ta-
ble I. All but the last 2 of these can be evaluated directly,
in terms of Gamma or Hypergeometric functions. For the
remaining 2, we proceed by deriving a first-order ODE
for each integral’s dependence on K2 and solving order-
by-order in ✏. All the integrals were checked numerically
in dimensions where they are finite. Substituting in the
loop amplitude using FORM [21], we obtain
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� k4
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5
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which is indeed finite, as consistency demands. Moreover,
there are no poles at K = 0 and the Fourier transform is
well defined.

Finally, we estimate the region of validity of the EFT
expansion in energy-momentum, by comparing the ab-
solute values of the tree-level and 1-loop results. Our
estimate depends, of course, on the values of the O(1)
coe�cients c2 and f3, and we present results for typical
values (in units of the overall scale w0) in Fig. 2. It should
be borne in mind that this really constitutes only a rough
upper bound on the region of validity; in particular, we
expect that comparison of other diagrams will indicate
that the EFT is not valid at arbitrarily large energy, for

I Tree-level: 1
p2

I 1-loop:
∫

d2+1q q6

(q+p)8 ∼
√

p2

I All counter-terms are rational functions of p2

I =⇒ There are no counterterms!
I =⇒ the correlator must be finite!
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identities obtained using AIR [20] to reduce the various
loop integrals to a set of 9 master integrals, listed in Ta-
ble I. All but the last 2 of these can be evaluated directly,
in terms of Gamma or Hypergeometric functions. For the
remaining 2, we proceed by deriving a first-order ODE
for each integral’s dependence on K2 and solving order-
by-order in ✏. All the integrals were checked numerically
in dimensions where they are finite. Substituting in the
loop amplitude using FORM [21], we obtain
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which is indeed finite, as consistency demands. Moreover,
there are no poles at K = 0 and the Fourier transform is
well defined.

Finally, we estimate the region of validity of the EFT
expansion in energy-momentum, by comparing the ab-
solute values of the tree-level and 1-loop results. Our
estimate depends, of course, on the values of the O(1)
coe�cients c2 and f3, and we present results for typical
values (in units of the overall scale w0) in Fig. 2. It should
be borne in mind that this really constitutes only a rough
upper bound on the region of validity; in particular, we
expect that comparison of other diagrams will indicate
that the EFT is not valid at arbitrarily large energy, for

I IR divergences cancel
I UV divergences cancel
I Does perturbation theory converge?



Does perturbation theory converge?
I a.k.a what is the cut-off?
I not Lorentz-invariant: distance vs. time scales
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TABLE I. Master integrals for the 1-loop, 2-point correlator with external momentum k and euclidean energy K, dimensionally
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FIG. 2. Contours of equal 1-loop and tree-level abso-
lute contributions to the momentum-space 2-point correlator
h(
p

Bu0 � 1)(
p

Bu0 � 1)i, for various O(1) values of c and f3.

small enough momentum (and vice versa), as the Figure
suggests.

V. DISCUSSION

Our results are a strong hint that there exists a consis-
tent quantum theory of fluids. If so, it is of great interest

to explore the physical predictions of the theory, and to
see whether they are realized in real-world systems. We
can already draw some inferences from the results de-
rived here. The first of these is that Lorentz invariance
is non-linearly realized in the quantum vacuum, just as
it is in a classical fluid. This follows immediately from
the occurrence of poles at ! = ck in the 2-point correla-
tors (2). Furthermore, the linearly realized symmetries
appear to be the same in the quantum theory as in the
classical theory, viz. the diagonal euclidean subgroup of
Poincaré⇥SDi↵. The second is that vortex modes ap-
parently do not propagate, in the sense that they do not
appear as poles in correlators of observables. In hindsight
this is no surprise, since propagating vortices would im-
ply IR divergences. We stress, though, that the absence
of vortex modes does not mean that our fluid EFT is
nothing but a complicated reformulation of a superfluid.
Indeed, it is already known that a superfluid and an or-
dinary fluid are inequivalent at ~ = 0 (although they are
equivalent if there is no vorticity) [22], and it follows by
continuity that fluids and superfluids must be inequiva-
lent in general at ~ 6= 0. It is tempting to conjecture,
however, that both the conservation of vorticity and the
equivalence between the zero-vorticity fluid and the su-
perfluid are preserved at the quantum level; if so, we
must look to quantum fluids with non-vanishing vortic-
ity in order to see a departure from superfluid behaviour.
One possible arena would be the study of the quanta cor-
responding to Kelvin waves [23], viz. low-energy pertur-
bations of vortex lines [24], for which ‘Thomsons’ is the
obvious moniker. More generally, it would be of inter-
est to explore the quantum version of any of the myriad
phenomena of classical fluids: surface waves, turbulence,
shocks, &c.

Where can we hope to observe such phenomena? Clas-
sical fluid behaviour is typically observed in underlying
systems that are in local thermodynamic equilibrium at



Summary

I ∃ evidence that quantum fluid theory exists as an EFT
I This theory is very special: ∃ vortices
I If it exists, it is of interest to explore the consequences
I What are the quantum analogues of turbulence, shocks,

surface waves, Kelvin waves, & c. ?
I What happens when we couple it to EM, &c?
I Nature ought to make use of it somewhere!


