Supergravity Couplings from CFT Correlation Functions

Stanislav Schmidt¹ Supervised by Prof Kostas Skenderis

14th January, 2016

Southampton STA

¹S.Schmidt@soton.ac.uk

Overview

Introduction

The CFT Correlator

Holographic computation of the correlator

Understand the Gravity Couplings

Conclusion and Summary

Introduction

Introduction

What do we want to achieve?

- Holographic principle offers a unique tool
- Crucial to understand the precise correspondence
- Need understanding of:
 - $1. \ \ {\rm The \ CFT \ field/operator \ content}$
 - 2. The gravity side fields and couplings/scalar potential
 - 3. What corresponds to what?
- Many of these aspects still need to be tested or established
- \Rightarrow My ongoing project

Introduction

Setup:

CFT: 4d $\mathcal{N} = 4 SU(N)$ SYM

 $\blacksquare Gravity: 5d supergravity on AdS_5(\times S^5)$

Starting point:

■ A symmetry argument fixes the value of some correlators (O...O) for a certain O.

To do:

- Establish correspondence
- Understand gravity couplings

The CFT Correlator

The CFT Correlator

CFT Symmetries and Fields

- The 4d $\mathcal{N} = 4$ SU(N) SYM field content comes from a dimensional reduction of a 10d $\mathcal{N} = 1$ SYM on \mathbb{T}^6 .
- **Symmetries:** Gauge SU(N) and global SU(2,2|4), which, in particular, contains the R-symmetry $SO(6) \sim SU(4)_R$
- **Scalar fields:** 6 real scalars ϕ_i^a , in the SU(N) adjoint and in the 6 of SO(6) global

The CFT Correlator

A symmetry argument

- Focus on the 6 real scalar fields ϕ_i in the 6 of SO(6)
- Define $Z \coloneqq \phi_1 + i\phi_2$
- There is a U(1) subgroup of the global SO(6) under which $Z \to e^{i\alpha}Z$.
- Define $\mathcal{O}_k := \operatorname{Tr}_{SU(N)}(Z^k)$, it has conformal dimension $\Delta = k$

$${f O}_k
ightarrow e^{iklpha} {\cal O}_k$$
 under the $U(1)$

$$\begin{array}{l} \blacksquare & \langle \mathcal{O}_k \mathcal{O}_k \mathcal{O}_k \mathcal{O}_k \rangle = 0 \text{ because it has a } U(1) \text{ charge} \\ & \langle \mathcal{O}_k \mathcal{O}_k \bar{\mathcal{O}}_k \bar{\mathcal{O}}_k \rangle \neq 0 \text{ because it's neutral.} \end{array}$$

With respect to the SO(6) indices \mathcal{O}_k are symmetric and traceless

Corresponding fields on the gravity side

- Symmetric traceless tensor fields in CFT holographically correspond to KK states on gravity side
- We are looking at CFT operators \mathcal{O}_k with scaling dimension $\Delta = k$
- The corresponding fields in the bulk are scalars with mass $m^2 = \Delta(\Delta 4) = k(k 4)$

Schematic bulk Lagrangian:

$$S_k \sim \frac{4N^2}{(2\pi)^5} \int d^5x \sqrt{-g} \left(-\frac{1}{2} \nabla_a s_k \nabla^a s_k - \frac{1}{2} m_s^2 s_k^2 \right) + \text{interactions}$$

Holographic computation

Remember that the mapping between the SYM correlators and bulk fields:

$$\exp(-\Gamma[\phi_{0,\Delta}]) = \langle \exp\left(\int_{\partial AdS} \phi_{0,\Delta} \mathcal{O}_{\Delta}\right) \rangle \stackrel{!}{=} \exp(-S^{AdS_5}_{\text{on-shell}}[\phi_{0,\Delta}])$$

where $\Gamma[\phi_{0,\Delta}]$ is the generating functional for all correlators of single trace operators \mathcal{O}_{Δ} .

In other words

$$\Gamma[\phi_{0,\Delta}] = S_{\text{on-shell}}^{AdS_5}[\phi_{0,\Delta}]$$

and

$$\langle \mathcal{O}_{\Delta} \dots \mathcal{O}_{\Delta} \rangle \sim \frac{\partial}{\partial \phi_{0,\Delta}} \dots \frac{\partial}{\partial \phi_{0,\Delta}} S_{\mathsf{on-shell}}^{AdS_5}[\phi_{0,\Delta}]$$

Holographic computation

- Thus we need the on-shell supergravity Lagrangian $S^{AdS_5}_{\text{on-shell}}[\phi_{0,\Delta}]$ in terms of the boundary conditions $\phi_{0,\Delta}$
- The bulk equations of motion are solved perturbatively, where the Greens-functions are usually represented as Witten-diagrams, e. g.:

Holographic computation

Challenges:

1. Identify and take into account the correct scalar/vector/graviton exchange diagrams

 \Rightarrow study the interaction structure of the bulk gravity theory

2. Bulk couplings

 \Rightarrow Study the scalar potential of gauged supergravity

3. Evaluate bulk integrals

 \Rightarrow Simplify integral expressions, use symmetries

Contributing Witten diagrams

- \Rightarrow What are the exchanged particles?
- \Rightarrow The correlator is proportional to the sum of all diagrams weighted by the correct couplings

Evaluate the exchange diagrams

 \Rightarrow Problem: Exchange diagrams lead to two bulk integrals

By using inversion and Poincare symmetries one bulk integral can be written as a solution of a differential equation and thus can be eliminated. [D'Hoker, Freedman, Rastelli]

$$= \sum_{n} a_n \times \bigotimes$$

Evaluate the exchange diagrams

Current status

- All exchange diagrams can be brought to a similar form
- In particular we can reduce everything to a sum over similar contact diagrams
- Finish re-summation of all diagrams
- Check the gravity couplings

Understand the Gravity Couplings

Understand the Gravity Couplings

Evaluate the exchange diagrams

- Want to understand bulk couplings in general
- Several approaches:
 - ▶ Dimensionally reduce 10d supergravity on S⁵ by hand, get couplings order by order from Einstein and self-duality equations [Seiberg et al.; Skenderis, Taylor; Arutyunov, Frolov]
 - \Rightarrow Keep the full fields spectrum, but get couplings order by order
 - ▶ Gauged 5d supergravity on AdS₅, derive emergent full scalar potential [Günaydin,Romans,Warner]
 - \Rightarrow Consistently truncate field content, get the full scalar potential
- Currently looking at gauged supergravity

Conclusion and Summary

Conclusion and Summary

Evaluate the exchange diagrams

 \Rightarrow It is still an ongoing project.

To do

- Get proficient with gauged supergravity and develop an efficient procedure to derive the scalar potential
- Simplify maths in the Witten diagram expansion and combine with couplings from scalar potential to re-sum
- Compare the correlator at strong coupling so obtained with the results at weak coupling obtained directly from the CFT

Expected results

- Possibly new non-renormalization theorems
- Interaction structure of supergravity is confirmed by the correlator structure of the CFT

