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Standard Model Effective Field Theory

Standard Model

Lsyv = — EF“VF,W
+ip D
+ ;Y Hip; + hc.
+|DyH? — V(H)



Standard Model Effective Field Theory

Standard Model SMEFT
Loy = — iF‘“’F,W Lsmerr = Lsm + Lps +
by Lps + Lpr + ...
+ &iY%jHlﬁj + h.c. where,

+|D,H|> = V(H)
: Lok =Y CriQui

m (Q; are simply operators built from SM d.o.f of dimension £,
while % runs over all operators available at that dimension
which satisfy Lorentz and SU(3) x SU(2) x U(1) gauge
symmetry



Standard Model Effective Field Theory

For this talk we'll restrict ourselves to

Lsvert = Lsm + Lps

59
= Lsm + ZCZQZ‘

i=1

Baryon number conserving operators only

80 Generated from Buchmuller & Wyler, but over complete
basis

Minimal basis of 59 operators in 1008.4884

Choice of basis

¢
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m The Wilson coefficients are dimensionful, C; =



Motivation for SMEFT

m The rationale behind extending the standard model in this
manner stems from the idea that the SM is simply a low
energy effective field theory

m If new physics exists at high energy, then the effects of
integrated out new particles should manifest itself as
non-renormalisable operators

m Same idea as four-quark operators, Fermi-theory, Higgs EFT
(large my limit) ...

m In the abscence of direct hint of a particular model, this is a
general way to proceed



Effect of Dimension-6 operators

m We get a new vacuum, vy, since (HTH)? alters the potential.
m We also get contributions to the mass and yukawa matrices.
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m Can lead to flavour violating effects

m Impose MFV: essentially require that the mass and Yukawa matrices
are simultaneously diagonalisable



Effect of Dimension-6 operators

m We also need to redefine the gauge fields and couplings..

m The actual expressions for the new terms are not relevant to
the talk however

m We'll denote objects with a bar as those that appear in the
covariant derivative in the broken phase of the theory

D, =0, i (WITH + W, T +igy [Ts — 5°Q) Z, + ieQA,
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Input Parameters

m Before proceeding, it's necessary to specify the input
parameters. How do we want the answer expressed?

m Choose to work with the following independent, physical
parameters

L éamHaMW»M27mfaCi

m In practise, we'll choose to eliminate My in terms of the
Fermi-constant G, though this will not be discussed here.



Tree-level Higgs decay: SMEFT style

With the SMEFT framework now in place, it is possible to study
the decay of the Higgs in this context. The tree-level decay
amplitude for the Higgs to fermions is straight forward. Simply the
effective Yukawa coupling from earlier dressed with external
spinors.

iMO(h £7) = iu(ps) (M, Pr+ MP) Py vlpy)
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Renormalisation Proceedure

m One-loop calculation proceeds in two parts:

m Bare one-loop matrix elements

m UV counter-terms
m Renormalise masses and electric charge in the on-shell scheme
m Renormalise Wilson coefficients in the MS scheme

m Standard for EFT calculations



Renormalisation

m Wavefunction, mass, and electric charge renormalisation

m Defining the renormalised fields in terms of bare ones,
indicated with the superscript (0)
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Renormalisation

m The on-shell scheme gives us our renormalisation conditions
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Renormalisation

m The mass counterterms are computed as

mye —~— *
dmyp = 7fRe (ZF(m3) + =F(m3) + E?(m?) + E? (m%))
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m The electric charge renormalisation can also be computed
from two-point functions
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Wilson Coefficient renormalisation

We use the M .S scheme for the renormalisation of the Wilson
coefficients. To one-loop order, we can write

©) _ 6Ci(p) 11 .
Ci - Oz (:U’) + 1671'2 - Cz (M) + 2% 167T2 Cz (:U’)

. d
Ci(p) = 167° | p—C;
() = 1672 (i)
But the anomalous dimension mixes the operators M%Ci(u) =T14;C;(w).

These were recently fully worked out in a set of three papers by Alonso,
Manohar, Jenkins & Trott.



Counter-term Construction

The counterterm for the h — ff decay amplitude can now be
written as

iMOT (= fF) = —itu(ps) (SM Py, + SM Pr) v(p7)

where we distinguish SM and dimension-6 contributions through
the notation

1
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Counter-term Construction

From considering the tree-level amplitude:
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Recap

Right, where do we stand...
m Chosen input parameters
me,my, Mw,Mz,mys,C;
m Calculated tree-level decay i/\/l(o)(h = ff)
m Chosen renormalisation proceedure

m Masses & electric charge in on-shell scheme

m Wilson coefficients in M S scheme

m These gave prescriptions for how to construct the
counter-terms

m We have expressions for the counter-terms iM<T-(h — ff)

We now have the ingredients to calculate the one-loop corrections...
M(l)(h%ff_‘) :M(l),bare_’_MCATA

We will do this calculation in the limit of vanishing gauge couplings and

further, only keep the log dependence or pieces proportional to m; in the
finite part.



Sample Diagrams
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Bare one-loop Matrix Elements

We'll discuss the contribution from four-fermion operators.



Four-Fermion operators

We denote the non-vanishing contribution for the sum of all four-fermion
diagrams to the bare matrix element by

,L.Mgl)ybare(h N ffT) _ (pf) (CL ,(1), bareP + CR ,(1), barePR) U(pf_)
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Four-Fermion operators

To renormalise we need to find all the four-fermion contributions
from the expression for the counter term. Mass renormalisation as

an example.
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Four-fermion Operators

After cancelling the divergences, we find

UTC&(I) = mb(mij — 4m} (1 — 250(m§{,m§,mf)) (Cé? + cF,gCﬁ))
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Implications for Phenomenology

It is possible to make some naive estimates for the impact on SM
phenomenology when also considering dimension-6 operators in
fixed order.

The decay rate can be written as:

Tree-level One-loop

Mhofh= B [TPD 4 1P L TP P ]
~~ ~— ~—— ~—— ~——
Phase-space O(1/A%  O(1/A2) O(1/A%) O(1/A2)

factor
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Implications for Phenomenology: Tree-level

Consider a tree-level comparison of dimension-6 and SM ~
contributions. Numerically, at a scale of Axyp = 1 TeV, for h — bb
this amounts to
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Implications for Phenomenology: One-loop
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Conclusion and Summary

m SMEFT is a model independent way to account for possible
decoupled BSM effects
m Calculated Higgs decays to b quarks at one-loop:
m Select renormalisation scheme
Calculate Feynman diagrams
Cancelation of divergences
Rough Pheno implications

m Interesting to note that the electric charge required
renormalisation even in the vanishing gauge coupling limit

m Next step is to complete the calculation without vanishing
gauge couplings...

m Can use renormalisation group running to resum higher order
logs....

Work in progress..
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