

Future Linear Colliders

Higgs–Maxwell Meeting, 17 February 2016

- Machines context
- Physics motivations
- Accelerator developments
- Detector collaboration developments
- Timelines and outlook

Machines context

clc

Higgs overview

Higgs overview

Higgs couplings – BSM sensitivity

example scenarios in which $M \sim 1 \text{ TeV}$ for new particles

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

arXiv: 1310.8361

Higgs couplings

...compare to HL-LHC

with LHC can only compare model-dependent fits:

assumes fractional shift in κ is equal for u,c,t; for d,s,b; and for e, μ , τ ; and no Higgs decay to invisible/exotic particles

Higgs couplings

Coupling $y(s_{1}(T_{OV})) \rightarrow 0$	LHC	CepC	FCC-ee	ILC	CLIC	FCC-hh	
L (fb ⁻¹) \rightarrow	3000(1 expt)	5000	13000	6000	4000	40000	Units
K	2-5	1.2	0.19	0.4	0.9		are %
Kz	2-4	0.26	0.15	0.3	0.8		
K_{g}	3-5	1.5	0.8	1.0	1.2		
K_{ν}	2-5	4.7	1.5	3.4	3.2	< 1	
K_{μ}	~8	8.6	6.2	9.2	5.6	~ 2	
κ _c		1.7	0.7	1.2	1.1		
K _τ	2-5	1.4	0.5	0.9	1.5		
K _b	4-7	1.3	0.4	0.7	0.9		
κ _{zγ}	10-12	n.a.	n.a.	n.a.	n.a.		
$\Gamma_{\rm h}$	n.a.	2.8	1.	1.8	3.4		
BR _{invis}	<10	<0.28	<0.19	<0.29	<1		
κ _t	7-10		13% ind. tt scan	6.3	<4	~1?	
К _{нн}	?	35% from K _z	20% from K _z	27	11	5-10	
		model-dep	model-dep				

summary table from Fabiola Gianotti LP15

Precision top physics

Precision top physics

H20: 500/fb @ 500 GeV, 200/fb @ 350 GeV, 500/fb @ 250 GeV, 3500/fb @ 500 GeV, 1500/fb @ 250 GeV Based on phenomenology described in Pomerol et al. arXiv:0806.3247

Sensitive to Higgs-sector resonance coupling to top; probes scales of ~25TeV in typical scenarios

From Ignatio Garcia / Marcel Vos

Direct BSM

1. example: 'SUSY model III'

2. example: 'compressed' spectrum

 \tilde{W} and \tilde{B} excluded by LHC where well-separated in mass from LSP. But if mass difference < 20GeV, visible decay products too soft to trigger.

3. example: disentangling couplings to new particle

Polarized beams -> decomposition:

Physics reach

NB, 'LCC' is Linear Collider Collaboration, – umbrella group directed by Lyn Evans

ILC accelerator developments --- iii

Global Design Effort (GDE) 2005–12

ILC accelerator developments

XFEL is 5%-scale 'ILC prototype', needs 24 MV/m ; ILC needs 31.5 MV/m

XFEL Test results: MAX GRADIENT

ILC current challenges:

- positron source
- final focus, nm-size beams

Site-specific adaptations: vertical shaft

Accelerator developments

developing:

- normal-conducting accelerating cavities (Cockcroft)
- cavity diagnostics (Manchester, Liverpool)
- crab cavities and klystrons (Lancaster)
- feed-forward systems and diagnostics (John Adams)
 - machine-detector interface and beam delivery system
- diagnostics, permanent magnets and RF (ASTeC)

most work is generic, for both ILC and CLIC

CLIC accelerator developments

(~50 institutes, including ASTeC, Dundee, Lancaster, Manchester, Oxford, RHUL; CLIC-UK supported by >£5M from CERN since 2011)

> CDR 2012. TDR 2022? Construction 2023–2030?

- developing project plan 2018 -> TDR 2022?
- high-gradient accelerating structure test results good
- experimental verification at CLIC Test Facility (CTF3) very successful
- looking at power reductions, optimizations

CLIC accelerator developments

ILC detector collaborations

- Adopting more formal structures
- Lols 2009/10; now moving towards TDRs
- Converging on common L*, working on fringe fields…

Aidan Robson

Phil Burrows (Oxford)

Collaboration Board chair

CLIC detector collaboration

26 institutes from 16 countries

John Marshall (Cambridge) Physics group convenor

Aidan Robson (Glasgow) Collaboration Board chair

Ongoing priorities:

- Higgs benchmarking studies (paper in progress)
- now focus on top and BSM capabilities
- detector optimisation -> new CLIC detector concept
- continuing vertex technology R&D
- continuation of fine-grained calorimeter R&D
- start of main silicon tracker R&D
- development of new software tools

Cambridge, Glasgow, Liverpool, Bristol, Edinburgh active in physics studies, software and simulation development, and silicon hardware development – all overlapping with ILC

Global status 1: ILC

The ILC story so far... Japanese HEP community proposed to host ILC Kitakami site was chosen Science Council of Japan (~Royal Society) made report with reservations MEXT (Japanese ministry) set up committee to investigate: – significance of physics, readiness of technology

- regional economic effects
- costs profile and international cost-sharing prospects
- Internal Japanese process ongoing. Interim MEXT report Aug 2015: asks for more clarity on BSM prospects includes statement allowing initiation of serious talks with other countries recommends more engagement by public & other science communities
- Final reports to MEXT in spring 2016
- Nomura commissioned to produce further reports visited UK in autumn 2015
- Expect decision some time in 2017?

There is high-level Japanese government support e.g. Federation of Diet members for the ILC and Prime Minister Abe

Lyn Evans & Japanese delegation at the White House

Global status 2: ILC

Thursday 11th February:

Highest-yet US–Japan political meetings

- MEXT Assistant Vice-Minister and secretariat, MEXT Director of HE&NP
- Diet Members, AAA Japan, Embassy
- DoE, Members of Congress, physicists...

US representative and 3 Diet Members

Lyn Evans

'last time I was in this building I was persuading the US to join the LHC'

ILC Timelines

 CLIC development continues, preparing Project Plan for 2018 ready for next European Strategy update
CLIC TDR 2022?

CLIC TDR 2022? Construction 2023–2030?

 CERN medium-term plan (5 years) foresees choice between FCC and CLIC at next European Strategy and FCC & CLIC fusing into common 'energy frontier' budget from 2020

- Internationally, ILC, CLIC proceeding in parallel
- ILC is mature and ready for construction!
- UK working in range of linear collider areas:
 - accelerators
 - detectors
 - software
 - physics studies,
 - particularly where ILC and CLIC overlap with good visibility
- Next few years critical for decision-making

Thanks to all who contributed: Phil Burrows, Mark Thomson, Joost Vossebeld, Veronique Boisvert, Matt Wing, Nigel Watson, Fergus Wilson