

EvtGen: heavy flavour Event Generator

John Back University of Warwick 21st April 2016

on behalf of the Warwick EvtGen team

Introduction

- Software tool to simulate B and D decays
 - Used by range of experiments (LHCb, ATLAS, CMS, Belle2, ...)
 - Created by A Ryd and D Lange; now maintained by Warwick team
- Wide range of decay models
 - Amplitudes based on helicity formalism; CP violation (mixing)
 - Takes into account spin/angular correlations; coherent/incoherent production
- Sequential particle decays
 - Specified using text (or xml) decay files
 - Decay probabilities: accept/reject method for each node in decay chain
 - Kinematics generally assume resonances are relativistic BW
 - Dalitz plots use isobar model for BWs, not K-matrix
- External package features
 - HepMC : For writing events in HepMC format (mandatory)
 - Photos⁺⁺: FSR γ (optional)
 - Pythia8: Generic decays that have no specific EvtGen model (optional)
 - Tauola⁺⁺: tau decays (optional)

Decay generation

- Uses amplitudes, summing over helicity (projection of spin onto <u>p</u> direction) states to include full angular information ⇒ spinor algebra (Jacob-Wick convention)
- Decay chain: sequence of sub-decays, e.g.
 - $B \to D X, \quad D \to Y h, \quad X \to a b c$
- Generates kinematics for each sub-decay node
- Accept/reject decay probability per node:

 $\mathscr{P} = \sum_{\lambda\lambda'} \rho A_{\lambda} A_{\lambda'}^* = \text{sum over all decay helicity states}$

 ρ = forward/backward spin-density matrix containing correlated angular information from parent/sibling decays

 λ = helicity states; A_{λ} = decay amplitude for state λ

- Each successful node decay is kept during decay cascade
 - Saves computational time for generating events
- Allows for different amplitude models for each node
 - Vector, scalar, tensor particles; form-factors; resonances

Code Maintenance

- EvtGen master svn repository hosted at CERN
 - Current tagged version is 1.5.0 (released 21st Oct '15)
 - EvtGen "svn librarian" members have write access
 - Guest read access at http://svn.cern.ch/guest/evtgen
 - Example build script, examples and validation code provided
 - Kept up-to-date with changes in external packages (e.g. Photos⁺⁺)
 - Critical bug fixes/collection of smaller changes \Rightarrow new tag every ~6 months
 - New versions announced via <u>announce@evtgen.warwick.ac.uk</u> email list
 - Should contain MC contacts from all known experiments, as far as we know
- Dev team are LHCb collaboration members
 - LHCb uses its own version of EvtGen, manually "synched" with master repository
 - Continually incorporating bug fixes/new models: LHCb \leftrightarrow master
 - There are some (minor) technical differences, but they use the same physics models
- Ask us questions using email: <u>dev@evtgen.warwick.ac.uk</u>
 - Bug fixes/new useful models from users are added to master repository
 - Warwick hosted web-page with news and some doc: <u>http://evtgen.warwick.ac.uk</u>

Developments over past year

- New/updated physics models:
 - Complete mixing phenomenology of $B_s \rightarrow \text{vector } \gamma$ (IFIC Valencia LHCb group)
 - Ks⁰ $\rightarrow \pi^0 \mu^+ \mu^-$, using JHEP08 (1998)004 (V Chobanova, DM Santos, J Dalseno; LHCb)
 - $B_c \rightarrow \text{scalar } \ell v, B_c \rightarrow \text{tensor } \ell v$ (J Wimberley, LHCb)
 - Updates for rare $\Lambda_{\rm b} \rightarrow \Lambda^* \, \ell \ell$ (Warwick LHCb group)
 - B \rightarrow 4 leptons, e.g. B⁻ $\rightarrow \mu^+ \mu^-$ anti- $\nu_{\mu} \mu^-$ (N Nikitin)
 - Extended HQET form factors for semi-tauonic decays (B Hamilton, LHCb)
- Added Mersenne-Twister Random Number Generator (RNG)
 - Enabled if configure script detects c++11-feature compiler (e.g. gcc 4.7)
 - Stdlib RNG removed; resonance ordering affected generated phase space (!)
 - Simple RNG kept; no biases seen for kinematics (particle ordering)
- Various issues resolved:
 - Bug fixes, mainly from LHCb "JIRA" web bug-tracking reports
 - Incorrect spinor algebra for $S_1 \rightarrow \frac{1}{2} S_2$, $\frac{1}{2} \rightarrow S_3 S_4$; EvtDiracParticle helicity rotations
 - Fixed some $b \rightarrow s \ell \ell$ form factor poles, particularly for e^{\pm} modes (Warwick LHCb)
 - Photos⁺⁺ changes in v3.60 caused problems for EvtGen (HepMC event issues)
 - Fixed in v3.61 after working closely with Photos developers ~2 weeks

$$B_{(s)} \rightarrow V \gamma$$

C Remon Alepuz et al, IFIC Valencia LHCb group

• New EvtSVPHelCPMix model for mixing-induced CP violation from interfering time-dependent amplitudes

Dirac particle helicity rotations

L M Garcia Marcin et al, LHCb IFIC Valencia group

• Wrong angular distribution for spin- ½ anti-particles appearing as both daughter and parent: $S_1 \rightarrow \frac{1}{2} S_2$, $\frac{1}{2} \rightarrow S_3 S_4$

 \mathscr{P} =0 if anti-particle is at rest after rotation into helicity frame

- Corrected transformations of helicity rotation components
- Example: $\Lambda_b \to \Lambda\gamma$, $\Lambda_b \to p \pi^+$: $\Gamma(\Lambda_b) = (1 + 0.642 \alpha_\gamma \cos\theta_\pi) \alpha(\Lambda_b)$

Particle Tuning

- DECAY.DEC updates in progress:
 - Full generic particle decay file using PDG BFs
 - Non-trivial issues using "automatic" tools
 - PDG sub-mode table indents inconsistent ⇒ double counting
 - Requires careful manual checking (reading original papers)
 - ΣExclusive = Inclusive not always the case (e.g. semileptonic decays)

- Particle properties in evt.pdl
 - Updated within LHCb version, will add to master repository

Inclusive charm BF tuning

Implemented in LHCb DECAY.DEC (Michal Kreps); will add to repository

9

Future

- Updates in progress
 - DECAY.DEC: list of generic decays; consistency between inclusive/exclusive modes
 - evt.pdl: particle property file
 - Adding new physics models (a few more expected from LHCb)
- Will migrate repository to HepForge
 - Well maintained infrastructure
 - Integrated repository with web-tools, doxygen documentation
 - Tracking of bugs and new/requested features
 - Hope is that all experiments will use this version
 - Expect to use **git** and its code review tools
 - Experiments can "fork" code, add their changes, then we can add them to master version
- Would like to remove remaining EvtGen Fortran code
 - Old CPV models involving B \rightarrow 3 pseudoscalars (e.g. 3 π with CKM $\alpha)$
 - Fortran compiler is still required if you need Tauola⁺⁺
- Lots of hardcoded physics parameters (mainly form factors)
 - Would be good to unify these, allow configuration via parameter files
 - Long term project, depends on interest from potential users

Open questions

• Q1: Updates to DECAY.DEC from (latest) PDG tables

- a) Σ Exclusive modes > Inclusive branching fractions (EvtGen rescales to 1.0)
 b) Avoiding double-counting ⇒ manual checking (slow process...reading papers)
 c) Should/can we combine update efforts with other MC generator groups?
- Q2: Tagging performance, generic decays
 - a) Generic B \rightarrow D π /DK (BF~35%) decays use Pythia \Rightarrow gives same <u>p</u> distributions
 - b) Quark content in Pythia modes last tuned during BaBar days (early 2000's)
 - c) Tuning study started by M Grosse & H Lacker few yrs ago, unknown if completed: see CERN EvtGen workshop Jan 2014: https://indico.cern.ch/event/290370
- Q3: Baryonic B decays

Too few models in EvtGen. Can we improve this?

- Q4: Improve testing and validation of existing models
 - a) Using existing models for new decay searches has revealed limitations/bugs e.g. LHCb extensions for semi-tauonic decays, spin-1/2 antiparticle decays
 b) Have experiments come across similar issues/problems?
- Q5: Adding new models from theoretical predictions
 EvtGen needs amplitudes in helicity formalism (spinors) ⇒ angular distributions