Flavour Tagging at ATLAS

Hannah Arnold

Albert-Ludwigs-Universität Freiburg

Heavy Flavour Production at the LHC, IPPP Durham

20-22 April 2106
Introduction

- \textit{b-tagging} = the identification of jets containing \textit{b}-hadrons
 \[\rightarrow\text{important tool for background suppression in a wide range of analyses }\]
 (e.g. top quark and Higgs sector, in the search for new phenomena)

- several dedicated \textit{algorithms} with varying levels of complexity and performance
- exploiting the \textit{long lifetime, high mass and decay multiplicity of b}-hadrons and the \textit{hard \textit{b}-quark fragmentation}
 \[\rightarrow\text{reconstructable secondary vertices and distinct track properties}\]

- performance characterized by power to separate \textit{b}-, \textit{c}- and light jets in simulated events
 (requires \textit{jet flavour labelling} based on simulation’s truth record)
 - \textbf{challenges}: dense and boosted environments, double \textit{b}-hadron jets, ...

- for use in physics analyses measurements of \textit{b}-jet tagging efficiency, \textit{c}-jet tagging efficiency and mistag rate required \[\rightarrow\text{data-to-MC scale factors (SF)}\]
 \[\rightarrow\text{eliminating / reducing dependence on simulations}\]
- several (complementary) calibration methods developed \[\rightarrow\text{combinations}\]
 - \textbf{challenges}: selecting samples with strong predominance of a single flavour, SF applicability to different simulations / processes, ...
Outline

1. Introduction

2. b-Tagging algorithms

3. Jet truth flavour labelling

4. Calibration of b-tagging algorithms

5. Summary
b-Tagging algorithms

- **lifetime-based**
 - impact parameter-based: (JetProb), IP3(2)D
 - vertex-based: SV(0)1, JetFitter
 → combinations: IP3D+SV1, IP3D+JetFitter, MV1, MV2 (Run 2)

- **muon-based**

- **b-jet trigger**

Key objects

- (small-R) calorimeter jets
 → jet axis used to **define b-hadron flight path**

- tracks reconstructed in the Inner Detector

- signal primary vertex (PV) of HS collision
 (with ≥ 2 tracks)

tracks-to-calo. jets association:

- based on angular separation $\Delta R(\text{track}, \text{jet})$

- ΔR cut varies as a function of the jet p_T
 (decreasing with increasing jet p_T)

- exclusive
Impact parameter (IP)-based algorithms I

Transverse IP d_0: distance of closest approach of track to PV in the r-ϕ projection

Longitudinal IP z_0: distance between z coordinates of the PV and the track at closest approach in r-ϕ

Improving separation power by:

- introducing **sign**: “+” (“-”) - track intersects the jet axis in front of (behind) the PV
- using **significance**, e.g. d_0/σ_{d_0}

→ tracks from b-/c-hadron decays: large d_0 and z_0, “+” sign
→ exp. resolution generates a random sign, tails at “+” from long-lived particles, conversions,...

→ **JetProb**: relies on d_0 significance; simple, robust, no simulation dependence
Impact parameter(IP)-based algorithms II

transverse IP d_0: distance of closest approach of track to PV in the r-ϕ projection

longitudinal IP z_0: distance between z coordinates of the PV and the track at closest approach in r-ϕ

improving separation power by:

- introducing **sign**: “+” (“-”) - track intersects the jet axis in front of (behind) the PV
- using **significance**, e.g. d_0/σ_{d_0}

→ tracks from b-/c-hadron decays: large d_0 and z_0, “+” sign

→ exp. resolution generates a random sign, tails at “+” from long-lived particles, conversions,...

IP3D: LLR-based, relies on d_0 and z_0 significances as well as correlations

→ more powerful, 2D-PDFs from simulation
Explicit reconstruction of a *single, inclusive* secondary vertex (SV).

- using all associated, displaced tracks to form vertex candidates from track pairs (χ^2 based)
- vertices compatible with long-lived particles and material interactions are rejected
- iterative procedure to combine all tracks from 2-track-vertices into single inclusive vertex

\rightarrow small mistag rate
\rightarrow SV finding efficiency: $\sim 70\%$

\rightarrow **SV1**: LLR-based, exploiting vertex mass, energy fraction, number of 2-track vertices, $\Delta R(\text{jet}, \text{PV-SV})$
Vertex-based algorithms: JetFitter algorithm

Explicit reconstruction of the complete b-hadron decay chain.

- exploiting topological structure of weak b- and c-hadron decays inside jet
- uses Kalman filter to find common line between and position of PV, SV and TV (tertiary, c-hadron decay vertex)
 → approximating b-hadron flight path
- one track sufficient to built vertex!

→ six variables: decay topology + vertex information

→ input for artificial neural network

→ three output nodes corresponding to the b-, c- and light jet hypotheses $P_{b/c/l}$

→ **final discriminating variables**: $\ln(P_b/P_l)$ (JetFitter), $\ln(P_b/P_c)$ (JetFitter(c))
Performance I

- **figure of merit:** b-jet tagging efficiency vs. light (c-) jet rejection
- **defined by placing cuts on b-/c-/light jet distributions of the discriminating variables in simulated $t\bar{t}$ events**
- **clear hierarchy between standalone and combined algorithms**
 - $MV1 = IP3D+SV1+(IP3D+JetFitter)$ (NN)

![Graph of b-jet tagging efficiency vs. light-flavour jet rejection](image-url)

- $\sqrt{s}=7$ TeV, $t\bar{t}$
- $p_T^{jet}>20$ GeV, $|\eta^{jet}|<2.5$

H. Arnold (Universität Freiburg)
Performance II: Run 2 improvements

Improved performance in Run 2 due to

- upgrade of the Inner Detector: added fourth pixel layer, Insertable B-Layer (IBL)
- improved track reconstruction (shared hits at high jet p_T)
- revisited b-tagging algorithms: MV2cxx

- BDT combining 24 input variables from SV, IP(2)3D, JetFitter algorithms
- “xx” = c-jet fraction in simulated $\bar{t}t$ events used for training

→ small admixture of c-jets only slightly degrades light-jet reject, significantly improves c-jet rejection
Performance III: Run 2 improvements

Improved performance in Run 2 due to

- upgrade of the Inner Detector: added fourth pixel layer, Insertable B-Layer (IBL)
- improved track reconstruction (shared hits at high jet p_T)
- revisited b-tagging algorithms: **MV2cxx**
 - BDT combining 24 input variables from SV, IP(2)3D, JetFitter algorithms
 - “xx” = c-jet fraction in simulated $t\bar{t}$ events used for training

→ @70% b-tagging eff.: factor 4 (1.5-2) improved light-(c-)jet rejection!
Performance IV: differential

- b-tagging depends on jet p_T and η, as well as average number of pile-up interactions, different impact on b-/c- and light-jet efficiencies
- Degradation of b-jet tagging efficiency at
 - very low jet p_T: the b-hadron flight path is (too) short, tracks are (too) soft and not very displaced
 - high jet p_T: merging of tracks, detector inefficient for very late decays, increased track multiplicity due to fragmentation
Performance V: dense environment and boosted topologies

Scenario: searches for new physics at high masses
→ highly boosted and collimated decay products, e.g. \(h \rightarrow b\bar{b} \)

- R=0.4 calo. jets might not be able to resolve the products from the two \(b \)-hadron decays
→ large-R (e.g. 1.0) calo. jets: “Higgs jet”

- apply \(b \)-tagging to ghost-associated (R=0.2) track jets
 - small \(R \) parameters possible
 - low PU sensitivity
 - good angular resolution also in dense environment

- exploit large-R jet substructure to improve bkg. rejection?

![ATLAS Simulation Preliminary](image)

ATLAS Simulation Preliminary

\(\sqrt{s} = 8 \text{ TeV}, M = 2.0 \text{ TeV}, k_{M_0} = 1.0 \)

- anti-\(k \), track jets
- \(k \), calo subjets

- Double b-tagging @ 70% WP
- Hadronic top jet

- 68% mass window

H. Arnold (Universität Freiburg)

Flavour Tagging at ATLAS

20-22 April 2016 13 / 31
Performance VI: double b-hadron jets

- b-tagging algorithms currently optimized on $t\bar{t}$ samples, i.e. for jets containing a single b hadron → no information on the number of b-hadrons
- competing effects if two b-hadron decays inside one jet (≥ 2 SVs, higher multiplicity of displaced tracks,...) likely improve (decrease) performance of IP-based and SV taggers (JetFitter)
- possible strategies to separate single and double b-hadron jets:
 - explicity reconstruct two b-hadron decay vertices / chains
 - exploit substructure, kinematic differences

Enriched b-jet sample using MV1@60%. Other MVA inputs: track-jet width, distances between tracks / subjets
Jet truth flavour labelling

Run 1
- select partons with $p_T > 5$ GeV
- cone-based matching to reco. jet: $\Delta R < 0.3$

Run 2
- select weakly decaying hadrons with $p_T > 5$ GeV
- *exclusive* cone-based matching to reco. jet: $\Delta R < 0.3$
- alternative: ghost-association

Order of labelling
- if b parton(hadron) is found $\rightarrow b$ jet
- else if c parton(hadron) is found $\rightarrow c$ jet
- else if tau is found \rightarrow tau jet
- else light jet

Comments
- several analyses already used Run 2 baseline in Run 1
- cone-based matching and ghost-association agree at the 1% level in case of b-jets (in $t\bar{t}$)
- difference has non-negligible impact on light-jet rejection
- cone-based labelling coherent with track-jet association \rightarrow baseline!
- $g \rightarrow b\bar{b}/c\bar{c}$ jets are labelled as b-/c-jets \leftarrow agrees with b-tagging point of view
Calibration of b-tagging algorithms

- the performance of b-tagging algorithms is optimized and evaluated using simulations, usually of inclusive $\bar{t}t$ events
- cannot expect simulations to describe all effects (modelling, detector) that impact the performance of b-tagging algorithms accurately
 → measurements of the b/c- and light-jet tagging efficiencies needed; as function of jet p_T and η
- requires extracting samples of jets dominated by a single jet flavour
- results are presented in terms of data-to-simulation scale factors

$$SF = \frac{\varepsilon_{x}^{\text{data}}}{\varepsilon_{x}^{\text{MC}}}, \quad x = b, c, \text{light}$$

assumption: SFs are process independent
i.e. SF measured in a $\bar{t}t$ dilepton sample, applicable to a $W+\text{jets}$ sample

SFs are MC generator dependent
→ current approach: MC-to-MC SFs
 better: derive SFs for different MC generators
Calibration methods: an overview

b-jet tagging efficiency calibration
- muon-based methods (dijet samples)
 - p_T^{rel}
 - system8
- $t\bar{t}$-based methods (single-/dilepton $t\bar{t}$) ← inclusive!
 - tag counting
 - kinematic selection
 - kinematic fit
 - combinatorial likelihood ← most precise!
→ **combined** with muon-based methods

c-jet tagging efficiency calibration
- $W+c$ method (soft-muon tagged)
- D^* method ($D^* \rightarrow D^0 (\rightarrow K\pi\pi)$)

Mistag rate calibration: negative tag method

Differences: purity, inclusiveness, simulation dependence, precision
Calibration results

b-jet tagging efficiency scale factor

<table>
<thead>
<tr>
<th>b-jet tagging efficiency scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

Combined (stat+syst)

Combined (stat)

Combinatorial likelihood on $t\bar{t}$

Dijet

ATLAS $= 7$ TeVs

$\int L dt = 4.7 \text{ fb}^{-1}$

$\sqrt{s} = 7 \text{ TeV}$

$\mu = 70\%$

MV1, $\varepsilon_b = 70\%$

c-jet tagging efficiency scale factor

<table>
<thead>
<tr>
<th>c-jet tagging efficiency scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
</tr>
</tbody>
</table>

Scale factor (stat)

Scale factor (stat+syst)

Scale factor (stat)

$\int L dt = 4.7 \text{ fb}^{-1}$

$\sqrt{s} = 7 \text{ TeV}$

$\mu = 70\%$

ATLAS

$\mu = 70\%$

$|\eta_{\text{jet}}| < 1.2$

Mistag rate scale factor

<table>
<thead>
<tr>
<th>Mistag rate scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
</tr>
</tbody>
</table>

Total uncertainties for MV1@70%: b-jet calib. 2-8% (comb. like.), c-jet calib. 8-15% (D^*), light-jet calib. 15-40%
Calibration results: dense environments I

- **top**: b-jet tagging efficiency for jets from the hadronic top decay in single-lepton $t\bar{t}$ events as function of
 - **left**: the minimal distance to a close-by jet
 - **right**: the distance between the jet axis and the PV-SV axis

 → SFs: ~ 1 and flat across jet p_T

- **bottom**: comparison of SFs with jets from the leptonic top decay → compatible
Efficiency for two b-tagged (MV1@70\%) track jets ghost-associated to large-R calo. jet.
Impact of (heavy flavour) modelling on b-tagging efficiencies

- **calibration’s goal**: resolve (minimize) simulation dependence
 (including detector response, reconstruction,...)

- calibration methods exploiting *inclusive jet samples* are doing a good job
 - still rely on simulation for e.g. (ratios of) flavour fractions, distributions of discriminant variables,... → accounted by applying dedicated uncertainties

- modelling uncertainties dominant for certain methods and phase space regions → can be resolved by refined, more data-driven methods, e.g. combinatorial likelihood method

- more difficult in case of methods relying on *non-inclusive jet samples*:
 - SFs applicable to *inclusive* jet samples if the differences of jet properties (affecting b-tagging) between the *non-inclusive* and the *inclusive* sample are well described

\[
\varepsilon = \alpha \cdot \varepsilon_{\text{excl}}
\]

\[
SF = \frac{\alpha_{\text{data}}}{\alpha_{\text{MC}}} \cdot SF_{\text{excl}}
\]

if $\alpha_{\text{data}} = \alpha_{\text{MC}}$ → $SF = SF_{\text{excl}}$

\[
\alpha_{\text{data}} = \alpha_{\text{MC}}?
\]

If not → need to extrapolate, i.e. estimate $\frac{\alpha_{\text{data}}}{\alpha_{\text{MC}}}$.

Pythia-default

Incl. c-jet sample

SMT c-jet sample

ATLAS Simulation Preliminary

\begin{aligned}
\text{c-jet tagging efficiency } &\varepsilon_{c} \\
\text{b-tagging operating point } &\varepsilon_{b}
\end{aligned}

\begin{align*}
\varepsilon_{\text{data}} &\approx \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\neq \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\approx \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\neq \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\approx \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\neq \varepsilon_{\text{MC}} \\
\varepsilon_{\text{data}} &\approx \varepsilon_{\text{MC}}
\end{align*}
Extrapolation to inclusive jet samples

- **goal**: estimate α_{data} from simulation where heavy quark fragmentation and heavy hadron decay properties are corrected to best knowledge:

 $$\alpha_{\text{data}} \approx \frac{\alpha_{\text{corr}}}{\alpha_{\text{MC}}} \cdot \text{SF}_{\text{excl}}$$

 $\rightarrow \text{SF} \approx \frac{\alpha_{\text{corr}}}{\alpha_{\text{MC}}} \cdot \text{SF}_{\text{excl}}$

- ratio \rightarrow SF extrapolation relatively independent from reference simulation

Example: corrections applied in $W+c$ calibration (reference MC: Pythia 6)

- the fragmentation fractions (e^+e^- and $e^\pm p$ data)
- the *total* branching ratio of the semileptonic decay of c-hadrons (PDG)
- the branching ratios of some *exclusive* semileptonic decays (PDG)
- the topological branching ratios of hadronic n-prong decays (PDG / EvtGen)
- the momentum of the decay muon in the rest frame of the c-hadron $p^*(\text{EvtGen})$

(the impact of the c-quark fragmentation function was evaluated, but not corrected)
Extrapolation to inclusive jet samples

- **goal**: estimate α_{data} from simulation where heavy quark fragmentation and heavy hadron decay properties are corrected to best knowledge:

$$\alpha_{\text{data}} \approx \alpha_{\text{corr}}^{\text{MC}}$$

$$\rightarrow \text{SF} \approx \frac{\alpha_{\text{corr}}^{\text{MC}}}{\alpha_{\text{MC}}} \cdot \text{SF}_{\text{excl}}$$

- ratio \rightarrow SF extrapolation relatively independent from reference simulation

Example: corrections applied in $W+c$ calibration (reference MC: Pythia 6)

- the production fractions (e^+e^- and $e^\pm p$ data)
- the *total* branching ratio of the semileptonic decay of c-hadrons (PDG) \leftarrow today: EvtGen*!
- the branching ratios of some *exclusive* semileptonic decays (PDG) \leftarrow today: EvtGen*!
- the topological branching ratios of hadronic n-prong decays (PDG / EvtGen) \leftarrow does not cancel!
- the momentum of the decay muon in the rest frame of the c-hadron (EvtGen)

*with ATLAS decay table

(the impact of the c-quark fragmentation function was evaluated, but not corrected)
Heavy hadron production fractions

- large differences in production fractions between generators
- existing measurements
 - for b-hadrons: HFAG (Tevatron), HFAG (Tevatron + LEP + LHCb)
 - for c-hadrons: several measurements in e^+e^- and $e^\pm p$ data → combination differ among each other and with simulation (Pythia 6 is rather close!)
- impact on b-tagging efficiencies is rather small; more pronounced for c-hadrons whose tagging efficiencies are rather different
 - for MV1@70%: $\varepsilon(D^+)/\varepsilon(D^0) \sim 1.8$
 - $\varepsilon(B^+)/\varepsilon(B^0) \sim 1.03$
Heavy hadron branching fractions

- inclusive and prominent exclusive semi-leptonic decays of dominant, weakly decaying heavy hadrons measured to high precision
 → implemented in EvtGen via ATLAS dec. table!
 (other generators show large differences)

- many exclusive hadronic decays are measured, but still make up only a relatively small fraction of all hadronic decays
 e.g. \(D^+\): 60%, \(b\)-baryons: much less

- large differences between the number of implemented exclusive hadronic decays in different generators (EvtGen » Pythia8 » Pythia6 » Herwig) and their branching fractions

- BUT: mainly the number of charged decay products has an impact on the tagging efficiency
 - unfortunately here the situation is not much better
Inclusive charged particle multiplicities

- only for the D^0 the topological (inclusive) n-prong fractions are measured from which one can infer the hadronic ones...
- the mean of inclusive charged particle multiplicities is measured for the admixture of B^0, B^+, B_s, Λ_b: EvtGen (4.76) \times 4.97 \pm 0.07 \ll Pythia 6 (5.20)
- BUT: b-tagging efficiency depends on spectrum - large differences between generators

→ dominant (extrapolation) uncertainty in p_T^{rel}, $W+c$ and D^* calibrations!
Using EvtGen ...

- harmonizes heavy hadron decays
- reduces the differences in the b-jet tagging efficiency predicted by generators significantly; only small differences at the % level, mainly at low jet p_T remain
- harmonization less pronounced in case of the c-jet tagging efficiency - fragmentation fractions, tracks from fragmentation, etc. have a stronger impact
Summary on HF modelling

- using EvtGen harmonizes the b-jet tagging efficiencies significantly, but cannot resolve the simulation dependency of SFs completely (especially for c-jets), since only affects heavy flavour decay modelling.
- Other corrections are still needed when extrapolating SFs to inclusive samples.
- Only comparisons between different generators allow to assess modelling uncertainties other than semi-leptonic branching fractions.
- Theoretically varying those within their measured uncertainties would suffice, but more complicated to do.
- The estimated SF extrapolation factors (rel. unc.) are for MV1:
 - $p_T^{rel} : \sim 1$ (3%);
 - $W+c$: 0.86 – 0.95 (3-7%); D^*: 0.82 – 0.92
 (the corrected eff. extrapolation factors are $W+c$: 0.7 – 0.75 $\ll D^*$: 0.5 – 0.6)
Summary

- several dedicated algorithms to identify jets containing b-hadrons
- high performing combined algorithm further improved for Run 2
- several methods to calibrate b-jet, c-jet tagging efficiencies and light-jet mistag rate
- using EvtGen consistently to decay heavy hadrons in Run 2 simulations reduced generator dependency of the b-jet tagging efficiency significantly
- b-tagging of small-R track jets ghost-associated to large-R calo. jets improves b-tagging in dense and boosted topologies
- work ongoing to better exploit jet substructure and to improve single and double b-hadron jet separation
BACKUP
<table>
<thead>
<tr>
<th>link</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1512.01094.pdf</td>
<td>“Performance of b-Jet Identification in the ATLAS Experiment“</td>
</tr>
<tr>
<td>ATLAS-CONF-2012-100.pdf</td>
<td>“Identification and Tagging of Double b-hadron jets with the ATLAS Detector”</td>
</tr>
<tr>
<td>ATLAS-CONF-2016-001.pdf</td>
<td>“Calibration of ATLAS b-tagging algorithms in dense jet environments”</td>
</tr>
<tr>
<td>ATLAS-CONF-2016-002.pdf</td>
<td>“Studies of b-tagging performance and jet substructure in a high p_T $g \rightarrow b\bar{b}$ rich sample of large-R jets from pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”</td>
</tr>
<tr>
<td>ATL-PHYS-PUB-2014-013.pdf</td>
<td>“Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector”</td>
</tr>
<tr>
<td>ATL-PHYS-PUB-2014-014.pdf</td>
<td>“b-tagging in dense environments“</td>
</tr>
<tr>
<td>ATL-PHYS-PUB-2015-035.pdf</td>
<td>“Expected Performance of Boosted Higgs ($\rightarrow b\bar{b}$) Boson Identification with the ATLAS Detector at $\sqrt{s} = 13$ TeV”</td>
</tr>
<tr>
<td>ATL-PHYS-PUB-2016-004.pdf</td>
<td>“Simulation of top quark production for the ATLAS experiment at $\sqrt{(s)} = 13$ TeV “</td>
</tr>
<tr>
<td>ATL-PHYS-PUB-2014-008</td>
<td>“Comparison of Monte Carlo generator predictions for bottom and charm hadrons in the decays of top quarks and the fragmentation of high p_T jets“</td>
</tr>
</tbody>
</table>