

ATLAS Heavy Flavour production Looking towards Run 2

Heavy Flavour at the LHC IPPP Durham 21/4/2016

ATLAS Heavy Flavour production Looking towards Run 2 into

Heavy Flavour at the LHC IPPP Durham 21/4/2016

- Chiara already showed some of the Run 1 results and HF-related issues that were discovered.
- I will show a few more recent results and prospects as we get further into Run 2:
 - A new Run 1 measurement on inclusive di-bjet production
 - MC generator setups for Run 2
 - Some early Run 2 results that are affected by HF production
 - Prospects for better HF production measurements in the future

Hot off the press

7 TeV bb di-jet cross section

New 7 TeV ATLAS result on di-b-jet production.

- One jet with $p_T > 270$ GeV required due to trigger.
- b-jets with $p_T > 20$ GeV and $\Delta R = 0.4$.
- Template fit used to extract true b-b contribution.
- m_{bb} step at ~500 GeV due to "turn-on" of flavour creation.

7 TeV bb di-jet cross section

New 7 TeV ATLAS result on di-b-jet production.

- One jet with $p_T > 270$ GeV required due to trigger.
- b-jets with $p_T > 20$ GeV and $\Delta R = 0.4$.
- Template fit used to extract true b-b contribution.
- Large ΔΦ region is dominated by flavour creation and underestimated by NLO predictions.
 <u>STDM-2013-03</u>

What does it tell us?

- These results use the same dataset...
 - How much do we learn about V+HF from inclusive di-b-jets?

- Seems like trends might be different?
- Is the large leading jet requirement good/bad?

Generator setups for Run 2

Generators for Run 2

Generator	Matrix Element	Flavour number scheme	Slicing/ filtering	Comments
Sherpa2.1	NLO@2j LO@4j	5fl	pT(V) & HF	Known mismodelling of low pT large η jets
Sherpa2.2	NLO@2j LO@4j	5fl	pT(V) & HF	Improvement in low pT large η jets
MG+Py8 A	LO@4j	5fl	N-parton	Mismodelling of jet pT (too hard)
MG+Py8 B	LO@4j	5fl	HT & HF	NLO PDF, different shower settings. (still too hard)
MG5_aMC+Py8 FxFx	NLO@2j	5fl	TBD	Very promising – some N–jets mismodelling
Alpgen	LO@5j	4fl	N-parton & b/c/light	The new old! HFOR can be problematic.
9			Josh McFayden	HF @ LHC 21/4/2016

7TeV vs 13TeV | Z+jets

What appears to be ~small slope at 7 TeV seems to becomes much more significant at 13 TeV.

Important to make new measurements at 13 TeV.

- **L**OCL
- 7 TeV VH(→bb) analysis saw large mismodelling of Δφ(j,j) and discrepancies between generators in m(j,j).
 - Difference between Sherpa and Alpgen
- Are in a better position with our Run 2 generators setups?

7TeV vs 13TeV | Z+jets

- Some systematic difference between Sherpa and MG5_aMC+Py8 CKKW-L
 - The data sits between the two.
 - The modelling seems to be improved but much less data.

7TeV vs 13TeV | Z+jets

- Some systematic difference between Sherpa and MG5_aMC+Py8 CKKW-L
 - ▶ The data seems to prefer the MG5_aMC+Py8 CKKW-L shape.

🕱 **7TeV vs 13TeV** | Z+b(b)

- Main difference between Sherpa2.1 and MG5_aMC CKKW-L is in the rate
 - From early analyses we see that the data seems to prefer the higher rate.

Shape deviations are more important.

7TeV vs 13TeV | Z+b(b)

Perhaps larger differences observed at 7 TeV than 13 TeV.

â III

- We have enough data to constrain the MC prediction here.
- Improvement by going to NLO.

- The familiar plot...
- Systematic shape differences observed
 - Sherpa seems to do a better job of modelling the shape of the low ΔR(b,b) region.

â

7TeV vs 13TeV | Z+b(b)

Sherpa ~flat in m(b,b), some shape deviation from other

Practicalities...

- Average CPU time/event
- Sherpa has the highest CPU time/evt.

â

- Average CPU time/event
- Sherpa has the highest CPU time/evt.
- Longer than full simulation!

â

- Average CPU time/event
- Sherpa has the highest CPU time/evt.
- Longer than full simulation!
- Dominated by high pT(V) slices and filter efficiencies.
 - NLO significantly more CPU consuming than LO.
 - B- and C-hadron filters have large effect.

Average CPU time/event by generator for $Z \rightarrow ee+jets$ production

â

HF @ LHC

21/4/2016

Josh McFayden

- Average CPU time/event
- Sherpa has the highest CPU time/evt.
- Longer than full simulation!

Average CPU time/event by generator for $Z \rightarrow ee$ +jets production

Â

Generator	Matrix Element	Flavour number scheme	Slicing/ filtering	Comments
Sherpa2.1	NLO@2j LO@4j	5fl	pT(V) & HF	Known mismodelling of low pT large η jets
Sherpa2.2	NLO@2j LO@4j	5fl	pT(V) & HF	Improvement in low pT large η jets
MG+Py8 A	LO@4j	5fl	N-parton	Mismodelling of jet pT (too hard)
MG+Py8 B	LO@4j	5fl	HT & HF	NLO PDF, different shower settings. (still too hard)
MG5_aMC+Py8 FxFx	NLO@2j	5fl	TBD	Very promising – some N–jets mismodelling
Alpgen	LO@5j	4fl	N-parton & b/c/light	The new old! HFOR can be problematic.
23			Josh McFayden	HF @ LHC 21/4/2016

Generator	Matrix Element	Flavour number scheme	Slicing/ filtering	Comments	
Sherpa2.1	NLO@2j LO@4j	5fl	All 5-fl pT(V exc	All 5-flavour scheme except Alpgen	
Sherpa2.2	NLO@2j LO@4j	5fl	pT(V) → HF	PI large n jets	
MG+Py8 A	LO@4j	5fl	N-parton	Mismodelling of jet pT (too hard)	
MG+Py8 B	LO@4j	5fl	HT & HF	NLO PDF, different shower settings. (still too hard)	
MG5_aMC+Py8 FxFx	NLO@2j	5fl	TBD	Very promising – some N–jets mismodelling	
Alpgen	LO@5j	4fl	N-parton & b/c/light	The new old! HFOR can be problematic.	
24 Josh McFayden HF @ LHC 21/4/2016					

Modelling

- Significant V+jets modelling improvements since Run 1.
- Quite large HF variations but also large uncertainty on the data.

HFOR

- Conspicuous absence of 4-flavour samples due to difficulty in HFOR.
 - Can we do better here?

Systematics

- Is the variation between several 5-fl scheme MCs sufficient for systematic uncertainty evaluations?
- Should we always add comparison to 4-fl scheme predictions?
- Usually we take normalisation from a control region so only shape/ acceptance variations are significant.
- Are there any other uncertainties that are not taken into account with this prescription?

Recent analysis

- Search for VH production via a heavy resonance.
 - Interpreted HVT model.
- Selection very similar to SM VH(→bb) analysis

- Search for VH production via a heavy resonance.
 - Interpreted HVT model.
- Selection very similar to SM VH(→bb) analysis

- High mass optimisation means a focus on boosted regime.
- ttbar and V+HF are dominant backgrounds

- Search for VH production via a heavy resonance.
 - Interpreted HVT model.
- Selection very similar to SM VH(→bb) analysis

High mass optimisation means a focus on boosted regime.

- ttbar and V+HF are dominant backgrounds
- Fit m_{(T)VH} distribution to look for resonances/set exclusion limits.

- Search for VH production via a heavy resonance.
 - Interpreted HVT model.
- Selection very similar to SM VH(→bb) analysis

Very low stats in 2-btag high stats region.

VH Resonances | V+jet modelling LCL

- Signal region defined by fat jet mass
 - Control regions defined outside m_{jet} window
 - Low m_{jet} region used for V+jets control region.
 - Significant contribution from V+HF.
 - Uncertainty on V+HF production is the dominant systematic uncertainties!
 - Mismodelling observed in high mass m(bb)...

- Measurements in the pipeline
 - 8 TeV Jpsi+mu
 - ▶ 13 TeV W/Z+HF
- What else should we be looking to measure?

Flavour-labelled kT-spittings?

- Measurements in the pipeline
 - 8 TeV Jpsi+mu
 - 13 TeV W/Z+HF
- What else should we be looking to measure?

Flavour-labelled kT-spittings?

Ê

- Measurements in the pipeline
 - 8 TeV Jpsi+mu
 - 13 TeV W/Z+HF
- What else should we be looking to measure?

Flavour-labelled kT-spittings?

Ê

UCL

- Repeat of 7 TeV measurements
 - Add W+HF to Z+HF measurement
 - More statistics
 - dR(b,b) with smaller statistical uncertainty
 - More differential measurements for W+HF
 - Add dedicated measurement in boosted regime
 - So far plan to have the following MC comparisons
 - Sherpa 2.2 5fl
 - MG5_aMC+Py8 CKKW-L 5fl
 - MG5_aMC+Py8 FxFx 5fl
 - Alpgen+Py6 4fl
 - What should we add?
 - MG5_aMC NLO Z+bb 4-fl
 - Sherpa 4-fl?

- A new measurement of **B hadron pair production** in progress at $\sqrt{s} = 8$ TeV
 - ► Identifying the B → J/ ψ (→ μ + μ –) + X and B → μ + X decay
 - Fit to extract differential cross sections in a number of kinematic variables.
 - Non-prompt J/ψ
 - Non-prompt 3rd µ
 - New constraints particularly in the region of close-by B-hadron pair production
 - Sensitive to $g \rightarrow bb$ production.
 - No jet radius restriction.

۴B

J/Ψ

U⁻

u⁺

11+/-

Β

- Signal cross section extracted as function of:
 - ΔR(J/ψ,μ)
 - Δφ(J/ψ,μ)
 - Δy(J/ψ,μ)
 - pT(J/ψ,μ)
 - m(J/ψ,μ)
 - yboost(J/ψ,μ)
 - ► m/pT
 - pt/m
- ~20% xs
 uncertaintiy in
 small ΔR
 region.

Ŵ

Summary

- HFOR
- HF-enhanced generation to increase efficiency?
- New HF measurements in progress
 - ► Z+HF
 - W+HF
 - More stats, more kinematic variables...
- Close-by $g \rightarrow bb$ region of most interest:
 - BB hadron
 - **J/ψ+μ**
 - 0.2 kT track jets?
- What else?!

Back-ups

VH Resonances | V+jet modelling LCL

- Signal region defined by fat jet mass
 - Control regions defined outside m_{jet} window
 - Low m_{jet} region used for V+jets control region.

VH Resonances | V+jet modelling 🕯 🗍 📿

- Signal region defined by fat jet mass
 - Control regions defined outside m_{jet} window
 Low m_{jet} region used for V+iets control region
 - V+jets control region.
 - Significant contribution from V+HF.
 - Low statistics in tail after 1-btag requirement

Josh McFayden HF @ LHC 21/4/2016

VH Resonances | V+jet modelling LCL

Signal region defined by fat jet mass

- Control regions defined outside m_{jet} window
- Low m_{jet} region used for V+jets control region.
- Significant contribution from V+HF.
- Very low statistics after 2-btag requirement
 - Will be worse with 10x luminosity!

Josh McFayden

HF @ LHC

21/4/2016

	B-veto C-veto	C-Filter B-veto	B-Filter
PtV0-70			
PtV70-140			
PtV140-280			
PtV280-500	24	1 cample	
PtV500-700		t sampic	3:
PtV700-1000			
PtV1000-2000			
PtV2000+			

Sherpa production time

LICL

LO->NLO

- Sample according to the optimised integrators, but for each PS point still have to calculate the ME, which is more expensive in the NLO case.
- Also the unweighting efficiency is much worse for the subtracted real in the NLO.
- High pTV
 - The integrators do not adapt very well to the extreme phase space regions in the high pT slices so the unweighting efficiency goes down
 - Also, in these regions more multi-parton ME calculations are required instead of the cheap V+0p@NLO because they dominate the high pT region